Hcs77 is a putative cell surface sensor for cell integrity signaling in Saccharomyces cerevisiae. Its loss of function results in cell lysis during growth at elevated temperatures (e.g., 39 degrees C) and impaired signaling to the Mpk1 mitogen-activated protein kinase in response to mild heat shock. We isolated the MID2 gene as a dosage suppressor of the cell lysis defect of an hcs77 null mutant. MID2 encodes a putative membrane protein whose function is required for survival of pheromone treatment. Mid2 possesses properties similar to those of Hcs77, including a single transmembrane domain and a long region that is rich in seryl and threonyl residues. We demonstrate that Mid2 is required for cell integrity signaling in response to pheromone. Additionally, we show that Mid2 and Hcs77 serve a redundant but essential function as cell surface sensors for cell integrity signaling during vegetative growth. Both proteins are uniformly distributed through the plasma membrane and are highly O-mannosylated on their extracellular domains. Finally, we identified a yeast homolog of MID2, designated MTL1, which provides a partially redundant function with MID2 for cell integrity signaling during vegetative growth at elevated temperature but not for survival of pheromone treatment. We conclude that Hcs77 is dedicated to signaling cell wall stress during vegetative growth and that Mid2 participates in this signaling, but its primary role is in signaling wall stress during pheromone-induced morphogenesis.
STE4 encodes the 13-subunit of a heterotrimeric guanine nucleotide-binding protein (G protein) that is an early and essential component of the pheromone signal transduction pathway. From a ste4 deletion strain we have isolated both dominant and recessive suppressors that show increased transcription of pheromone responsive genes and have regained the ability to mate, albeit at a low level. Each of these suppressor mutations suppresses ste4 and ste5 deletions but not deletions in STE7, STEll, or STE12. Among the dominant mutations, we have identified two alleles of STEll, a gene that encodes a protein kinase activity essential for mating. One allele contains an alteration in the putative regulatory domain of the protein kinase; the second allele has an alteration in the catalytic site. In strains carrying these mutations, a second protein kinase required for mating, STE7, becomes hyperphosphorylated, just as it does in wild-type cells treated with pheromone. Thus, a protein kinase cascade appears to be an essential feature of the response pathway and probably connects the receptor/G protein to an identified transcription factor, STE12.[Key Words: STE11 protein kinase; yeast pheromone response; signal transduction]
The STE12 gene of Saccharomyces cerevisiae is essential for the expression of genes required for mating, such as those involved in pheromone response, and for genes unrelated to mating but regulated by the presence of an adjacent copy of the transposable element Tyl. We show that the STE12 protein is a component of specific DNA-protein complexes that form with transcriptional control elements from Tyl and the a-pheromone receptor gene STE2. Although a sequence involved in pheromone-dependent transcriptional activation is protected in both complexes, competition experiments indicate that the complexes are intrinsically different from each other. We show that another factor involved in cell-type-specific transcription, PRTF/GRM, is a component of the complex with the STE2 fragment but not the Tyl fragment. We propose that the STE12 product interacts with different transcription factors in different sequence contexts and that PRTF/GRM is one of these factors.
Pheromone‐stimulated yeast cells and haploid gpa1 deletion mutants arrest their cell cycle in G1. Overexpression of a novel gene called MSG5 suppresses this inhibition of cell division. Loss of MSG5 function leads to a diminished adaptive response to pheromone. Genetic analysis indicates that MSG5 acts at a stage where the protein kinases STE7 and FUS3 function to transmit the pheromone‐induced signal. Since loss of MSG5 function causes an increase in FUS3 enzyme activity but not STE7 activity, we propose that MSG5 impinges on the pathway at FUS3. Sequence analysis suggests that MSG5 encodes a protein tyrosine phosphatase. This is supported by the finding that recombinant MSG5 has phosphatase activity in vitro and is able to inactivate autophosphorylated FUS3. Thus MSG5 might stimulate recovery from pheromone by regulating the phosphorylation state of FUS3.
Intracellular signaling from receptor tyrosine kinases in mammalian cells results in activation of a signal cascade that includes the guanine nucleotide-binding protein Ras and the protein kinases Raf, MEK [mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase (ERK) kinase], and MAPK. MAPK activation that is dependent on the coupling of Ras and Raf was reconstituted in yeast. Yeast genes were isolated that, when overexpressed, enhanced the function of Raf. One of them is identical to BMH1, which encodes a protein similar to members of the mammalian 14-3-3 family. Bacterially synthesized mammalian 14-3-3 protein stimulated the activity of Raf prepared from yeast cells expressing c-Raf-1. Thus, the 14-3-3 protein may participate in or be required for activation of Raf.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.