Aim:ERC1671 is an allogeneic/autologous therapeutic glioblastoma (GBM) vaccine – composed of whole, inactivated tumor cells mixed with tumor cell lysates derived from the patient and three GBM donors.Methods:In this double-blinded, randomized, Phase II study bevacizumab-naive patients with recurrent GBM were randomized to receive either ERC1671 in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF) (Leukine® or sargramostim) and cyclophosphamide plus bevacizumab, or placebo plus bevacizumab.Interim results:Median overall survival (OS) of patients treated with ERC1671 plus bevacizumab was 12 months. In the placebo plus bevacizumab group, median OS was 7.5 months. The maximal CD4+ T-lymphocyte count correlated with OS in the ERC1671 but not in the placebo group.Conclusion:The addition of ERC1671/GM-CSF/cyclophosphamide to bevacizumab resulted in a clinically meaningful survival benefit with minimal additional toxicity.
Object
The object of this study was to determine the tolerability and activity of lacosamide in patients with brain tumors.
Methods
The authors reviewed the medical records at 5 US academic medical centers with tertiary brain tumor programs, seeking all patients in whom a primary brain tumor had been diagnosed and who were taking lacosamide.
Results
The authors identified 70 patients with primary brain tumors and reviewed seizure frequency and toxicities. The majority of the patients had gliomas (96%). Fifty-five (78%) had partial seizures only, and 12 (17%) had generalized seizures. Most of the patients (74%) were started on lacosamide because of recurrent seizures. Forty-six patients (66%) reported a decrease in seizure frequency, and 21 patients (30%) reported stable seizures. Most of the patients (54 [77%]) placed on lacosamide did not report any toxicities.
Conclusions
This retrospective analysis demonstrated that lacosamide was both well tolerated and active as an add-on antiepileptic drug (AED) in patients with brain tumors. Lacosamide's novel mechanism of action will allow for concurrent use with other AEDs, as documented by its activity across many different types of AEDs used in this patient population. Larger prospective studies are warranted.
Glioblastoma is the most common form of brain cancer in adults that produces severe damage to the brain leading to a very poor survival prognosis. The standard of care for glioblastoma is usually surgery, as well as radiotherapy followed by systemic temozolomide chemotherapy, resulting in a median survival time of about 12 to 15 months. Despite these therapeutic efforts, the tumor returns in the vast majority of patients. When relapsing, statistics suggest an imminent death dependent on the size of the tumor, the Karnofsky Performance Status, and the tumor localization. Following the standard of care, the administration of Bevacizumab, inhibiting the growth of the tumor vasculature, is an approved medicinal treatment option approved in the United States, but not in the European Union, as well as the recently approved alternating electric fields (AEFs) generator NovoTTF/Optune. However, it is clear that regardless of the current treatment regimens, glioma patients continue to have dismal prognosis and novel treatments are urgently needed. Here, we describe different approaches of recently developed therapeutic glioma brain cancer vaccines, which stimulate the patient’s immune system to recognize tumor-associated antigens (TAA) on cancer cells, aiming to instruct the immune system to eventually attack and destroy the brain tumor cells, with minimal bystander damage to normal brain cells. These distinct immunotherapies may target particular glioma TAAs which are molecularly defined, but they may also target broad patient-derived tumor antigen preparations intentionally evoking a very broad polyclonal antitumor immune stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.