We present a constraint-based approach to computing winning strategies in two-player graph games over the state space of infinite-state programs. Such games have numerous applications in program verification and synthesis, including the synthesis of infinite-state reactive programs and branching-time verification of infinite-state programs. Our method handles games with winning conditions given by safety, reachability, and general Linear Temporal Logic (LTL) properties. For each property class, we give a deductive proof rule that --- provided a symbolic representation of the game players --- describes a winning strategy for a particular player. Our rules are sound and relatively complete. We show that these rules can be automated by using an off-the-shelf Horn constraint solver that supports existential quantification in clause heads. The practical promise of the rules is demonstrated through several case studies, including a challenging "Cinderella-Stepmother game" that allows infinite alternation of discrete and continuous choices by two players, as well as examples derived from prior work on program repair and synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.