Many problems in formal methods can be formalized as two-player games. For several applicationsÐprogram synthesis, for exampleÐin addition to determining which player wins the game, we are interested in computing a winning strategy for that player. This paper studies the strategy synthesis problem for games defined within the theory of linear rational arithmetic. Two types of games are considered. A satisfiability game, described by a quantified formula, is played by two players that take turns instantiating quantifiers. The objective of each player is to prove (or disprove) satisfiability of the formula. A reachability game, described by a pair of formulas defining the legal moves of each player, is played by two players that take turns choosing positionsÐrational vectors of some fixed dimension. The objective of each player is to reach a position where the opposing player has no legal moves (or to play the game forever). We give a complete algorithm for synthesizing winning strategies for satisfiability games and a sound (but necessarily incomplete) algorithm for synthesizing winning strategies for reachability games. CCS Concepts: • Theory of computation → Automated reasoning; • Software and its engineering → Automatic programming;