This paper presents an investigation on the resonant oscillations of an 11 kV layer-type winding transformer under standard and chopped lightning impulse overvoltage conditions based on calculated parameters. The resistances, inductances and capacitances were calculated in order to develop the transformer winding equivalent circuit. The impulse overvoltages were applied to the high voltage (HV) winding and the resonant oscillations were simulated for each of the layers based on different electrostatic shield placement configurations. It is found that the placement of grounded shields between layer 13 and layer 14 results in the highest resonant oscillation and non-linear initial voltage distribution. The oscillation and linear stress distributions are at the lowest for shield placement between the HV and low voltage (LV) windings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.