Soil clay minerals significantly influence the accumulation and stabilization of organic carbon (OC). However, the effect of interactions among phyllosilicate clay minerals, native OC and sesquioxides (Fe/Al oxides) on the adsorption-desorption of dissolved organic carbon (DOC) under different background electrolyte types and concentration is poorly understood. A set of batch adsorption-desorption experiments were conducted using pedogenic clays extracted from soils dominated by kaolinite-illite (Kaol-Ill), smectite (Smec) and allophane (Allo). The clay samples were sequentially treated to remove native OC and sesquioxides, and tested for adsorption-desorption of DOC under various solution conditions. All the experiments were conducted at pH 7 using water extractable fraction of OC from wheat residues. DOC adsorption increased with increasing background electrolyte concentration, and the presence of Ca 2+ significantly enhanced the uptake in comparison to Na + due to a possible cationic bridging effect. Under all electrolyte conditions, the maximum DOC adsorption capacity (Q max ) (mg g −1 ) of the soil clay fractions (SCF) maintained the order: Allo N Smec N Kaol-Ill. A similar order was also observed when the adsorption capacities were normalized to the specific surface area (SSA) of the SCFs (mg m −2 ). DOC adsorption showed a positive relationship with SSA, and sesquioxides and allophanic minerals provided the largest contributions to the SSA in the SCF. Removal of sesquioxides from the SCF resulted in a decrease in SSA and thus DOC adsorption, whereas removal of native OC increased the SSA and subsequent DOC adsorption. Because this study used pedogenic SCFs which represented soils formed in different environments instead of processed clays from geological deposits, it provided realistic information about the interaction of DOC with SCF in relation to their native OC and sesquioxide contents. It also revealed the importance of Ca 2+ in enhancing the carbon adsorption capacities of these SCFs.
Heavy metal(loid)s and organic contaminants are two major groups of pollutants in soils. The fate and exposure of such pollutants in soil depends on their chemical properties, speciation, and soil properties. Soil properties and processes that control the toxicological aspects of pollutants include temperature, moisture, organic matter, mineral fractions, and microbial activities. These processes are vulnerable to climate change associated with global warming, including increased incidences of extreme rainfall, extended dry periods, soil erosion, and a rise in sea level. Here we explain evidence that relates to the effects of climate change-driven soil processes on the mobility, transport, and storage of pollutants in soil. The review found that changes in climate could increase human exposure to soil contaminants mainly due to processes involving soil organic carbon (SOC), surface runoff, redox state, and microbial community. However, uncertainties remain in relation to the extent of contaminant toxicity to human health, which is linked to global change drivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.