Crop losses mainly occur due to biotic factors, which include soil-borne phytopathogens, insect pests, parasites, and predators. The major loss of food in the food industry is due to its spoilage by various microorganisms. With advancement in nanotechnology, the use of nanoparticles in food and agriculture crop yield can be improved. In this context, copper nanoparticles (CuNPs) have attracted a great deal of attention from all over the world due to their broad-spectrum antimicrobial activity. Copper is one of the key micronutrients, which plays an important role in growth and development of plants. CuNP-based fertilizer and herbicide can be used in agriculture. The small size of CuNPs facilitates their easy absorption by the plants. CuNPs can be promisingly used in the food packaging to avoid the growth of food spoilage microorganisms. The use of CuNP-based agar packaging materials has substantial potential to increase the shelf-life of food. The present review focuses on the application of Cu and CuNPs in food and agriculture. Moreover, antimicrobial and pesticidal properties of CuNPs are also discussed.
Heavy metal(loid)s and organic contaminants are two major groups of pollutants in soils. The fate and exposure of such pollutants in soil depends on their chemical properties, speciation, and soil properties. Soil properties and processes that control the toxicological aspects of pollutants include temperature, moisture, organic matter, mineral fractions, and microbial activities. These processes are vulnerable to climate change associated with global warming, including increased incidences of extreme rainfall, extended dry periods, soil erosion, and a rise in sea level. Here we explain evidence that relates to the effects of climate change-driven soil processes on the mobility, transport, and storage of pollutants in soil. The review found that changes in climate could increase human exposure to soil contaminants mainly due to processes involving soil organic carbon (SOC), surface runoff, redox state, and microbial community. However, uncertainties remain in relation to the extent of contaminant toxicity to human health, which is linked to global change drivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.