This study employs the least square support vector machine (LSSVM) for the prediction of pullout capacity of small ground anchor. LSSVM is firmly based on the theory of statistical learning and uses regression technique. In LSSVM, Vapnik and Lerner (1963)'s ε-insensitive loss function was replaced by a cost function which corresponded to a form of ridge regression. The input parameters of LSSVM were equivalent anchor diameter, anchor embedment depth, average cone tip resistance, average cone sleeve friction, and installation technique. Using 83 out the available 119 in-situ test datasets, an LSSVM regression model was developed. The goodness of the model was tested using the remaining 36 data points. The developed LSSVM also gave an error bar of predicted data. A sensitivity analysis was conducted to determine the effect of each input parameter. The results were compared with the artificial neural network (ANN) model. Overall, LSSVM was shown to perform well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.