There is growing scientific agreement that antioxidants, particularly the polyphenolic forms, may help lower the incidence of disease, such as certain cancers, cardiovascular and neurodegenerative diseases, DNA damage, or even have anti-aging properties. On the other hand, questions remain as to whether some antioxidants or phytochemicals potentially could do more harm than good, as an increase in glycation-mediated protein damage (carbonyl stress) and some risk has been reported. Nevertheless, the quest for healthy aging has led to the use of antioxidants as a means to disrupt age-associated deterioration in physiological function, dysregulated metabolic processes or prevention of many age-related diseases. Although a diet rich in polyphenolic forms of antioxidants does seem to offer hope in delaying the onset of age-related disorders, it is still too early to define their exact clinical benefit for treating age-related disease. Regardless of where the debate will end, it is clear that any deficiency in antioxidant vitamins or adequate enzymatic antioxidant defenses can manifest in many disease states and shift the redox balance in some diseases. This updated review critically examines general antioxidant compounds in health, disease and aging with hope that a better understanding of the many mechanisms involved with these diverse compounds may lead to better health and novel treatment approaches for age-related diseases.
Flavonoids are natural, plant-derived compounds which exert diverse biological activities, also valuable neuroprotective actions within the brain and currently are intensively studied as agents able to modulate neuronal function and to prevent age-related neurodegeneration. Among them, flavones isolated from Scutellaria baicalensis root exhibit strong neuroprotective effects on the brain and are not toxic in the broad range of tested doses. Their neuroprotective potential has been shown in both oxidative stress-induced and amyloid-beta and alpha-synuclein-induced neuronal death models. Baicalein, the main flavone present in Scutellaria baicalensis root, strongly inhibited aggregation of neuronal amyloidogenic proteins in vitro and induces dissolution of amyloid deposits. It exerts strong antioxidative and anti-inflammatory activities and also exhibits anti-convulsive, anxiolytic, and mild sedative actions. Importantly, baicalein, and also another flavone: oroxylin A, markedly enhanced cognitive and mnestic functions in animal models of aging brains and neurodegeneration. In the preliminary study, wogonin, another flavone from Scutellaria baicalensis root, has been shown to stimulate brain tissue regeneration, inducing differentiation of neuronal precursor cells. This concise review provides the main examples of neuroprotective activities of the flavones and reveals their potential in prevention and therapyof neurodegenerative diseases.
Age-related dementias such as Alzheimer disease (AD) have been linked to vascular disorders like hypertension, diabetes and atherosclerosis. These risk factors cause ischemia, inflammation, oxidative damage and consequently reperfusion, which is largely due to reactive oxygen species (ROS) that are believed to induce mitochondrial damage. At higher concentrations, ROS can cause cell injury and death which occurs during the aging process, where oxidative stress is incremented due to an accelerated generation of ROS and a gradual decline in cellular antioxidant defense mechanisms. Neuronal mitochondria are especially vulnerable to oxidative stress due to their role in energy supply and use, causing a cascade of debilitating factors such as the production of giant and/or vulnerable young mitochondrion who's DNA has been compromised. Therefore, mitochondria specific antioxidants such as acetyl-L-carnitine and R-alphalipoic acid seem to be potential treatments for AD. They target the factors that damage mitochondria and reverse its effect, thus eliminating the imbalance seen in energy production and amyloid beta oxidation and making these antioxidants very powerful alternate strategies for the treatment of AD.
Purpose Acrolein, a toxic, reactive aldehyde formed metabolically and environmentally, has been implicated in the damage to and dysfunction of the retinal pigment epithelium (RPE) that accompanies age-related macular degeneration (AMD). Our purpose was to investigate the potential of acrolein to influence the release of transforming growth factor beta-2 (TGFβ2) and vascular endothelial growth factor (VEGF), to assess the ability of N-benzylhydroxylamine (NBHA) to prevent the effect of acrolein on cytokine release and reduction of viable cells, and to explore the pathway by which acrolein might be causing the increase of VEGF. Materials and Methods Confluent ARPE-19 cells were treated with acrolein and/or NBHA. They were also pretreated with SIS3, a specific inhibitor of SMAD 3, and ZM39923, a JAK3 inhibitor, before being treated with acrolein. Viable cells were counted; ELISA was used to measure the TGFβ2 and/or VEGF in the conditioned media. Results Acrolein was shown to reduce the number of viable ARPE-19 cells and to upregulate the release of the proangiogenic cytokines TGFβ2 and VEGF. Co-treatment with 200 μM NBHA significantly reduced the effects of acrolein on viable cell number and TGFβ2 release. Pretreatment of the cells with SIS3 partially blocked the action of acrolein on decreased viable cell number and VEGF upregulation, suggesting that part of the effects of acrolein are mediated by the increased levels of TGFβ and its signaling. Conclusions Our results suggest that the action of acrolein on the reduction of viability and VEGF increase by ARPE-19 cells is partially mediated by TGFβ2. By reducing the effects of acrolein, NBHA and SIS3 could be potential pharmacological agents in the prevention and progression of acrolein-induced damage to the RPE that relates to AMD.
Rb1, a ginsenoside from ginseng root extract, possesses antiangiogenic effects, but its role on ocular cells has not been studied. We hypothesize that Rb1 inhibits the production of the angiogenic cytokine VEGF from ARPE-19 cells, leading to a significant reduction in the proliferation of ocular vasculatures. Data from our experiments show that Rb1 induced an increase in the number of ARPE cells in culture, while VEGF release (pg/10,000 viable cells) was significantly reduced. Treatment with VEGF and cotreatment with Rb1 and VEGF showed that this Rb1-induced cell proliferation was mediated by VEGF. Because VEGF from RPE plays a major role in promoting angiogenesis in ocular vasculatures. Our finding that Rb1 inhibits the release of VEGF from RPE cells suggests that Rb1 has a significant role in the eye to protect against angiogenic diseases such as age-related macular degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.