To manage the increasing turbine temperatures of future gas turbines a cooled cooling air system has been proposed. In such a system some of the compressor efflux is diverted for additional cooling in a heat exchanger (HX) located in the bypass duct. The cooled air must then be returned, across the main gas path, to the engine core for use in component cooling. One option is do this within the combustor module and two methods are examined in the current paper; via simple transfer pipes within the dump region or via radial struts in the prediffuser. This paper presents an experimental investigation to examine the aerodynamic impact these have on the combustion system external aerodynamics. This included the use of a fully annular, isothermal test facility incorporating a bespoke 1.5 stage axial compressor, engine representative outlet guide vanes (OGVs), prediffuser, and combustor geometry. Area traverses of a miniature five-hole probe were conducted at various locations within the combustion system providing information on both flow uniformity and total pressure loss. The results show that, compared to a datum configuration, the addition of transfer pipes had minimal aerodynamic impact in terms of flow structure, distribution, and total pressure loss. However, the inclusion of prediffuser struts had a notable impact increasing the prediffuser loss by a third and consequently the overall system loss by an unacceptable 40%. Inclusion of a hybrid prediffuser with the cooled cooling air (CCA) bleed located on the prediffuser outer wall enabled an increase of the prediffuser area ratio with the result that the system loss could be returned to that of the datum level.
Fluidic devices are of interest with turbomachinery internal air systems for modulation of cooling air and other applications. Generally, the flow states within a fluidic device are switched by control flow or flows. For most fluidic devices the switching procedure is almost instantaneous and hence it is difficult to characterize the performance of a device experimentally. The objective of this research is to numerically investigate the dynamic characteristics of a control flow operated fluidic device. In this study the dynamic characteristics of a nozzle during switching is considered. The simulations considered the unsteady interaction of the control flow with the nozzle jet for two different switching scenarios namely, switching of high to low flow state and vice versa. The magnitude of static pressure applied at the control port was identified as a controlling parameter and had to be below a critical value to achieve stable switching. The CFD solutions show that this is related to the flow physics and critical momentum flux ratios for switching are calculated for the present device.
The quantity of cooling air delivered by the secondary air system to various engine components is usually fixed by cooling requirements at the most arduous operating condition in the flight cycle. Modulation of cooling air would allow optimization of cooling supply at different flight cycle conditions, giving significant performance benefits. Switched vortex valves (SVV) have been proposed for control of air systems [1]. An important characteristics of this device is the absence of any moving part. This offers advantages compared to other systems. This report discusses the numerical study of a typical SVV. The study includes comparison of predicted results with available experimental data and prediction of switching characteristics of the device. In this study two turbulence models namely the Spalart-Allmaras model (SA) and Reynolds stress model (RSM) were used. The RSM showed a good agreement with measured mass flow rate and qualitative agreement with other experimental observations.
As aero gas turbine designs strive for ever greater efficiencies the trend is for engine overall pressure ratios to rise. Although this provides greater thermal efficiency it means that cycle temperatures also increase. Traditionally turbines have been the focus of cooling schemes to enable them to survive high temperatures. However, it is envisaged that the compressor delivery air will soon reach temperatures which mean they may require similar cooling strategies to the turbine. One such concept is akin to that of a turbine “rim purge flow” which ensures that hot, mainstream flow does not get ingested into rotor cavities. However, the main gas path in compressors is generally more aerodynamically sensitive than in turbines and introduction of a purge flow may be more penalizing. It is important to understand the impact such a flow may have on the primary gas path flow of a compressor and the downstream combustion system aerodynamics. This paper presents a preliminary investigation into the effects of a purge flow which enters the main gas path immediately upstream of the high pressure compressor outlet guide vane (OGV) row. Initial, simplified, CFD predictions clearly demonstrated the potential of the purge flow to negatively affect the OGV/pre-diffuser and alter the inlet conditions to the combustion system. Consequently, an experimental assessment was carried out using an existing fully annular, isothermal test facility which incorporated a bespoke 1.5 stage axial compressor, engine relevant outlet guide vanes, pre-diffuser and downstream combustor geometry. Using CFD to guide the process the test rig was modified to allow a metered airflow to be introduced upstream of the outlet guide vanes. Importantly the flow was directed up the face of the rotor such that it picked up a representative swirl component prior to injection into the main gas path. The experimental data confirmed the CFD results and importantly demonstrated that the degradation in the combustor inlet flow resulted in an increased combustion system loss. At the proposed purge flow rate, equal to ∼1% of the mainstream flow, these effects were small with the system loss increasing by ∼4%. However, at higher purge flow rates (up to 3%) these effects became notable and the OGV/pre-diffuser flow degraded significantly with a resultant increase in the combustion system loss of ∼13%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.