The study of ultrasonic welding has been going on for more than 50 years. The mechanism of joint formation and characterization of the interface in ultrasonically made joints between metal sheets and wires have been the most thought-provoking area for the researchers. The study of post-welding microstructure, the formation of any intermetallic compound at the interface and their effect on the joint strength, the presence of heat affected zone in the ultrasonically joined sheets has been explored but still, arguably the least understood. Interface characteristics are different in similar and dissimilar combinations of metals. This work presents a comprehensive review of literature regarding the studies on the microstructural analysis at the interface of the joints made by ultrasonic welding on different combinations of metal sheets. Additionally, this paper provides an analysis of the observations made by different scientists that promotes the future scope of research in this area. The study has been confined to ultrasonic metal welding only.
The ultrasonic joining of phosphor bronze sheets is analyzed using a 3-D finite element model for the study and prediction of the thermal profiles at the weld interface. The heat fluxes are calculated and assigned as boundary conditions during the thermal simulation. The forecast of temperature is done under various welding conditions. The maximum temperature obtained by transient simulation at the weld interface is 366.74℃. The continuous reduction in the temperature is observed towards the extremes of the weld metal. The sonotrode and the anvil achieve a lower temperature in comparison to the weld interface. The effect of clamping force and bonding ratio on the interface temperature is observed as positive. The model is validated with an error of 1.576% between the observed and predicted temperature results and a correlation co-efficient 0.96 is established between the simulated temperature results and the weld strength. Sufficiently strong joints were obtained at the optimum welding conditions with 74% joint efficiency. It is evident that the interface temperature has a strong linear relationship with joint strength and is a major deciding factor for achieving strong joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.