Schiff bases have been synthesized by the reaction of triazole containing primary amine with aromatic carbonyl compounds. The Schiff bases prepared, act as ligand when these are made in contact with oxovanadium (VO2+) ion. Some new mononuclear oxovanadium(IV) complexes have been synthesized by the reaction of Schiff base ligands with vanadyl sulphate (VOSO4.xH2O) and the complexes are analyzed by different spectroscopic methods; [fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis.), electron paramagnetic resonance (EPR)], X-ray diffraction (XRD) analysis, elemental analysis, and conductivity measurement. The complexes have been well characterized based on analytical data. The electrolytic nature of the complexes was determined based on the molar conductance values. The powder XRD pattern has been used to determine crystal size and type. The synthesized Schiff base ligands and oxovanadium(IV) complexes were found to be stable in air and moisture at room temperature. On the basis of the physicochemical data, the tentative geometry of the complexes has been proposed. Antibacterial sensitivity of the ligand and its metal complexes have been assayed in vitro against bacterial pathogens viz. growth inhibitory activity of ligands and complexes against pathogens has also been determined.
A series of some mononuclear oxovanadium(IV) complexes have been synthesized by the reactions of oxovanadium(IV) sulfate with Schiff base ligands derived from 3-(phenyl / substituted phenyl)-4-amino-5-mercapto-1, 2, 4-triazoles of aromatic carboxylic acids and benzyl. The complexes were analyzed by different spectroscopic methods (FTIR, UV-Vis., EPR), X-ray diffraction (XRD) analysis, elemental analysis, conductivity measurement, and cyclic voltammetry (CV) analysis. The non-electrolytic nature of the complexes was determined on the basis of the molar conductance values. The powder X-ray diffraction pattern has also been used to determine crystal size and type. On the basis of the physicochemical data, the tentative square- pyramidal geometry of the complexes has been proposed. In vitro antibacterial andantidiabeticproperties by alpha amylase inhibition activities of the selected complexes have also been determined.
A triazole, 2-(4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)phenol, has been prepared from 2-hydroxybenzoic acid by routine multi-step chemical synthesis. It was then used in synthesizing two different Schiff base ligands (L1 and L2). Their respective oxovanadium (IV) complexes (ML1 and ML2) were consequently synthesized and characterized by different experimental techniques like elemental analysis, FTIR spectroscopy, UV-Visible spectroscopy, and EPR spectrometry. The cyclic voltammetry measurements showed the electrochemically stable nature of the complexes. The powder X-ray diffraction patterns revealed the presence of monoclinic crystals with particle sizes of ca. 15-17 nm for both complexes. DFT calculations were performed for the determination of geometrical models, energetic stability, electronic properties, spectral features, and reactivity of the synthesized ligands and complexes. The spectral characterization of the complexes suggests a square-pyramidal geometry around VO (IV)group and was supported by computational results derived from the proposed models. This work shows that computational calculation along with experimental characterization provides better insights into new chemical compounds and their properties that could be performed in parallel as a regular tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.