In this study, the generation of continuous valued attenuation maps from MR sequences is demonstrated and its effect on PET quantification is evaluated in comparison with segmentation-based μ-maps. A less-than-2-minute acquisition time makes the proposed approach promising for a clinical application for studies of the head. However, further experiments are required to validate and evaluate this technique for attenuation correction in other regions of the body.
PET/MR showed equivalent performance in terms of qualitative lesion detection to PET/CT. The differences demonstrated in quantitation of tracer uptake between PET(CT) and PET(MR) were minor, but statistically significant. Nevertheless, a more detailed study of the quantitative accuracy of PET(MR) and the factors governing it is needed to ultimately assess its accuracy in measuring tissue tracer concentrations.
The successful integration of a four-channel RF breast coil with a defined table position together with the CT-based μ-maps provides a technical basis for future clinical PET/MR breast imaging applications.
The presence of flexible RF surface coils leads to considerable local errors in the simultaneously measured PET activity concentration up to 15.5% especially in regions close to the coils. The presented automatic algorithm accurately and reliably reduces the PET quantification errors caused by multiple partly overlapping flexible RF surface coils to values of 4.3% or better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.