Abstract. The maximum clique problem is a well known NP-Hard problem with applications in data mining, network analysis, information retrieval and many other areas related to the World Wide Web. There exist several algorithms for the problem with acceptable runtimes for certain classes of graphs, but many of them are infeasible for massive graphs. We present a new exact algorithm that employs novel pruning techniques and is able to quickly find maximum cliques in large sparse graphs. Extensive experiments on different kinds of synthetic and real-world graphs show that our new algorithm can be orders of magnitude faster than existing algorithms. We also present a heuristic that runs orders of magnitude faster than the exact algorithm while providing optimal or near-optimal solutions.
The maximum clique problem is a well-known NP-hard problem with applications in data mining, network analysis, information retrieval, and many other areas related to the World Wide Web. There exist several algorithms for the problem, with acceptable runtimes for certain classes of graphs, but many of them are infeasible for massive graphs. We present a new exact algorithm that employs novel pruning techniques and is able to find maximum cliques in very large, sparse graphs quickly. Extensive experiments on different kinds of synthetic and real-world graphs show that our new algorithm can be orders of magnitude faster than existing algorithms. We also present a heuristic that runs orders of magnitude faster than the exact algorithm while providing optimal or near-optimal solutions. We illustrate a simple application of the algorithms in developing methods for detection of overlapping communities in networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.