Resistance to the selective estrogen receptor modulator (SERM) tamoxifen and to aromatase inhibitors that lower circulating estradiol occurs in up to 50% of patients, generally leading to an endocrine-independent ER+ phenotype. Selective ER downregulators (SERDs) are able to ablate ER and thus theoretically to prevent survival of both endocrine-dependent and independent ER+ tumors. The clinical SERD, fulvestrant, is hampered by intramuscular administration and undesirable pharmacokinetics. Novel SERDs were designed using the 6-OH-benzothiophene (BT) scaffold common to arzoxifene and raloxifene. Treatment-resistant (TR) ER+ cell lines (MCF-7:5C and MCF-7:TAM1) were used for optimization, followed by validation in the parent endocrine-dependent cell line (MCF-7:WS8), in 2D and 3D cultures, using ERα in-cell westerns, ERE-luciferase, and cell viability assays, with GDC-0810 (ARN-810) used for comparison. Two BT SERDs with superior in vitro activity to GDC-0810 were studied for bioavailability and shown to cause regression of a TR, endocrine-independent ER+ xenograft superior to GDC-0810.
Schistosomiasis affects millions of people in developing countries and is responsible for more than 200,000 deaths annually. Because of toxicity and limited spectrum of activity of alternatives, there is effectively only one drug, praziquantel, available for its treatment. Recent data suggest that drug resistance could soon be a problem. There is therefore the need to identify new drug targets and develop drugs for the treatment of schistosomiasis. Analysis of the Schistosoma mansoni genome sequence for proteins involved in detoxification processes found that it encodes a single cytochrome P450 (CYP450) gene. Here we report that the 1452 bp open reading frame has a characteristic heme-binding region in its catalytic domain with a conserved heme ligating cysteine, a hydrophobic leader sequence present as the membrane interacting region, and overall structural conservation. The highest sequence identity to human CYP450s is 22%. Double stranded RNA (dsRNA) silencing of S. mansoni (Sm)CYP450 in schistosomula results in worm death. Treating larval or adult worms with antifungal azole CYP450 inhibitors results in worm death at low micromolar concentrations. In addition, combinations of SmCYP450-specific dsRNA and miconazole show additive schistosomicidal effects supporting the hypothesis that SmCYP450 is the target of miconazole. Treatment of developing S. mansoni eggs with miconazole results in a dose dependent arrest in embryonic development. Our results indicate that SmCYP450 is essential for worm survival and egg development and validates it as a novel drug target. Preliminary structure-activity relationship suggests that the 1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethan-1-ol moiety of miconazole is necessary for activity and that miconazole activity and selectivity could be improved by rational drug design.
Migraine is the third most prevalent disease worldwide and current therapies provide only partial relief. Greater insight into molecular migraine mechanisms would create novel therapies. Cytoskeletal flexibility is fundamental to neuronal-plasticity and is dependent on microtubule dynamicity. Histone-deacetylase-6 (HDAC6) decreases microtubule dynamics by deacetylating its primary substrate, α-tubulin. We use validated models of chronic migraine to show that HDAC6-inhibition is an effective migraine treatment and reveal an undiscovered cytoarchitectural basis for migraine chronicity. The human migraine trigger, nitroglycerin, produced chronic migraine-associated pain and decreased neurite growth in pain-processing regions, and these were reversed by HDAC6 inhibition.Cortical spreading depression (CSD), a physiological correlate of migraine aura, also caused decreased cortical neurite growth, while administration of HDAC6-inhibitor restored neuronal complexity and decreased CSD. Our results demonstrate that disruptions in neuronal cytoarchitecture are a feature of chronic migraine, and evolving migraine therapies might include agents that restore microtubule stability and neuronal plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.