The clean production of hydrogen from water using sunlight has emerged as a sustainable alternative toward large-scale energy generation and storage. However, designing photoactive semiconductors that are suitable for both light harvesting and water splitting is a pivotal challenge. Atomically thin transition metal dichalcogenides (TMD) are considered as promising photocatalysts because of their wide range of available electronic properties and compositional variability. However, trade-offs between carrier transport efficiency, light absorption, and electrochemical reactivity have limited their prospects. We here combine two approaches that synergistically enhance the efficiency of photocarrier generation and electrocatalytic efficiency of two-dimensional (2D) TMDs. The arrangement of monolayer WS2 and MoS2 into a heterojunction and subsequent nanostructuring into a nanoscroll (NS) yields significant modifications of fundamental properties from its constituents. Spectroscopic characterization and ab initio simulation demonstrate the beneficial effects of straining and wall interactions on the band structure of such a heterojunction-NS that enhance the electrochemical reaction rate by an order of magnitude compared to planar heterojunctions. Phototrapping in this NS further increases the light–matter interaction and yields superior photocatalytic performance compared to previously reported 2D material catalysts and is comparable to noble-metal catalyst systems in the photoelectrochemical hydrogen evolution reaction (PEC-HER) process. Our approach highlights the potential of morphologically varied TMD-based catalysts for PEC-HER.
2D materials’ junctions have demonstrated capabilities as metal‐free alternatives for the hydrogen evolution reaction (HER). To date, the HER has been limited to heterojunctions of different compositions or band structures. Here, the potential of local strain modulation based on wrinkled 2D heterostructures is demonstrated, which helps to realize photoelectrocatalytically active junctions. By forming regions of high and low tensile strain in wrinkled WS2 monolayers, local modification of their band structure and internal electric field due to piezoelectricity is realized in the lateral direction. This structure produces efficient electron–hole pair generation due to light trapping and exciton funneling toward the crest of the WS2 wrinkles and enhances exciton separation. Additionally, the formation of wrinkles induces an air gap in‐between the 2D layer and substrate, which reduces the interfacial scattering effect and consequently improves the charge‐carrier mobility. A detailed study of the strain‐dependence of the photocatalytic HER process demonstrates a 2‐fold decrease in the Tafel slope and a 30‐fold enhancement in exchange current density. Finally, optimization of the light absorption through functionalization with quantum dots produces unprecedented photoelectrocatalytic performance and provides a route toward the scalable formation of strain‐modulated WS2 nanojunctions for future green energy generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.