Background:Hepatitis is a health problem affecting millions of people worldwide and it is the major risk factor for liver cirrhosis. In India, many plants are used to treat hepatitis. But little is known about the effects of (-)-epicatechin a bioactive compound of Phyllanthus niruri (PN) in hepatitis rats.Objective:The present study was designed to explore the antioxidant property of (-)-epicatechin isolated from PN in D-Galactosamine (D-GalN) induced hepatitis rats.Materials and Methods:The rats are divided into five groups as per the experimental design. (-)-Epicatchin pretreatment was given to the hepatitis rats for 21 days and biochemical analysis was carried out. The hepatic antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), glutathione S-transferase (GST), reduced glutathione (GSH), and malondialdehyde (MDA) and serum markers aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), albumin, and bilirubin are estimated.Results:All the antioxidant enzymes activities and albumin levels are depleted in hepatitic rats. Whereas GST, ALP, AST, ALT activities and MDA, and bilirubin levels are elevated in hepatitis rats, (-)-epicatechin pretreatment increased all the antioxidant enzymes and decreased the GST, ALP, AST, ALT, and MDA levels in hepatitis rats. However, histopatholoigic studies also proves that (-)-epicatechin pretreatment decreased the tissue damage in hepatitis condition. This is the first report on the antioxidant enzymes and hepatoprotective effect of (-)-epicatechin in hepatitis rats.Conclusion:From this study, we conclude that (-)-epicatechin treatment decreased the oxidative damage in hepatitis rats.SUMMARY The present study was carried out to know the impact of (-)-epicatechin on antioxidant enzymes activities in hepatitis rats. From this study, we found that the antioxidant enzymes SOD, CAT, GPx, GR, GSH depleted in hepatitis rats and increased with (-)-epicatechin in hepatitis rats.MDA levels increased in hepatitis rats and decreased with (-)-epicatechin in hepatitis rats. From this study, we concluded that (-)-epicatechin will be useful to treat hepatotoxicity in rats. Abbreviations used: Phyllanthus niruri (PN), D-Galactosamine (D-GalN), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), glutathione s transferase (GST), reduced glutathione (GSH) and malondialdehyde (MDA) aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), World Health Organisation (WHO), Indian Institute of Science (IISc), Nicotinamide adenine dinucleotide phosphate (NADPH), thiobarbituric acid reactive substances (TBARS)
Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.
The present paper has been designed to evaluate phytochemical profile, in vitro free radical scavenging activity, cytotoxicity of methanolic extract and in vivo antioxidant activity of polyphenolic fraction of Acalypha indica leaves. Methanolic extract of A. indica leaves (MEAIL) contained rich amount of phenols, flavonoids and saponins. The GC-MS analysis of extract revealed 13 compounds, whereas HR-LC/Q-TOF/MS showed 87, and all were coincided with functional groups identified by FTIR. The extract showed good scavenging activity on DPPH, H 2 O 2 , hydroxyl radicals and metal ions. The Polyphenolic fraction induced the antioxidant enzymes in Diabetic rats. The extract also potentially showed cytotoxic (LC 50 : 140.02 lg/mL) activity against brine shrimp. Based on these analytical results, in vitro and in vivo experiments, it was concluded that the MEAIL has encompassed rich amount of polyphenols (antioxidants) and cytotoxic compounds for their respective activities. Polyphenolic fraction has the induction capacity to elevate cellular antioxidant enzymes in diabetic animals.
In our in vitro and in vivo studies, we used Acalypha indica root methanolic extract (AIRME), and investigated their free radical scavenging/antioxidant and anti-inflammatory properties. Primarily, phytochemical analysis showed rich content of phenols (70.92 mg of gallic acid/g) and flavonoids (16.01 mg of rutin/g) in AIRME. We then performed HR-LC-MS and GC-MS analyses, and identified 101 and 14 phytochemical compounds, respectively. Among them, ramipril glucuronide (1.563%), antimycin A (1.324%), swietenine (1.134%), quinone (1.152%), oxprenolol (1.118%), choline (0.847%), bumetanide (0.847%) and fenofibrate (0.711%) are the predominant phytomolecules. Evidence from in vitro studies revealed that AIRME scavenges DPPH and hydroxyl radicals in a concentration dependent manner (10–50 μg/mL). Similarly, hydrogen peroxide and lipid peroxidation were also remarkably inhibited by AIRME as concentration increases (20–100 μg/mL). In vitro antioxidant activity of AIRME was comparable to ascorbic acid treatment. For in vivo studies, carrageenan (1%, sub-plantar) was injected to rats to induce localized inflammation. Acute inflammation was represented by paw-edema, and significantly elevated (p < 0.05) WBC, platelets and C-reactive protein (CRP). However, AIRME pretreatment (150/300 mg/kg bodyweight) significantly (p < 0.05) decreased edema volume. This was accompanied by a significant (p < 0.05) reduction of WBC, platelets and CRP with both doses of AIRME. The decreased activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase in paw tissue were restored (p < 0.05 / p < 0.01) with AIRME in a dose-dependent manner. Furthermore, AIRME attenuated carrageenan-induced neutrophil infiltrations and vascular dilation in paw tissue. For the first time, our findings demonstrated the potent antioxidant and anti-inflammatory properties of AIRME, which could be considered to develop novel anti-inflammatory drugs.
Background: The prevalence of diabetes in the world population has reached 8.8 % and is expected to rise to 10.4% by 2040. Hence, there is an urgent need for the discovery of drugs against therapeutic targets to sojourn its prevalence. Previous studies proved that NF-κB serves as central agent in the development of diabetic complications. Objectives: This review intended to list the natural plant compounds that would act as inhibitors of NF-κB signalling in different organs under diabetic condition with their possible mechanism of action. Methods: Information on NF-κB, diabetes, natural products and relation in between them was gathered from scientific literature databases such as Pubmed, Medline, Google scholar, Science direct, Springer, Wiley online library. Results and Conclusion: NF-κB plays a crucial role in the development of diabetic complications because of its link in expression of genes that are responsible for organs damage such as kidney, brain, eye, liver, heart, muscle, endothelium, adipose tissue and pancreas by inflammation, apoptosis and oxidative stress. Activation of PPAR-α, SIRT3/1, and FXR through many cascades by plant compounds such as terpenoids, iridoids, flavonoids, alkaloids, phenols, tannins, carbohydrates, and phyto cannabinoids recover the diabetic complications. These compounds also exhibit prevention of NF-κB translocation into nucleus by inhibiting NF-κB activators such as VEGFR, RAGE and TLR4 receptors which in turn prevent the activation of many genes involved in tissue damage. Current knowledge on the treatment of diabetes by targeting NF-κB is limited, so future studies would enlighten accordingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.