We present evidence that the cisplatin-resistant human ovarian cancer lines, A2780S/CP1 (S/CP1), A2780S/CP3 (S/CP3), and A2780S/CP5 (S/CP5), derived by subjecting the sensitive A2780S ovarian cancer line to multiple rounds of cisplatin treatments followed by recovery and are resistant to 1, 3, and 5 μM cisplatin, respectively, have increased colony-forming ability and altered morphology that is consistent with enhanced motility, migration, and invasiveness in vitro. The malignant phenotype progresses with increasing resistance and is associated with hyperactive epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinase (Erk)1/2 and Janus kinases (Jaks), aberrant Signal Transducer and Activator of Transcription (Stat) 3 activation promoted by EGFR and Jaks, and epithelial-mesenchymal transition (EMT) in vitro. Survivin and FLIP anti-apoptotic factors, vascular endothelial growth factor (VEGF), and matrix metalloproteinase activities are also elevated in the resistant cells. Accordingly, the ectopic expression of constitutively-active Stat3C in the sensitive A2780S cells diminished cisplatin sensitivity. The inhibition of EGFR or Stat3 activity repressed Survivin, VEGF and Vimentin expression and the colony-forming potential, viability, motility, and migration of the resistant cells, and sensitized them to cisplatin. Analysis of human ovarian cancer patients’ tumor tissues shows aberrantly-active EGFR and Stat3 that in certain cases correlate with Vimentin over-expression. Intra-peritoneal mouse xenograft studies revealed, compared to the sensitive A2780S line that had low tumor incidence restricted to the ovary, a high tumor incidence for the resistant S/CP3 and S/CP5 lines that formed tumor nodules at several locations on the small-intestine and colon, and which responded poorly to cisplatin, but were sensitive to concurrent treatment with cisplatin and EGFR or Stat3 inhibitor. Hyperactive EGFR signaling through Stat3 and the Jak-Stat3 activity together promote ovarian cancer progression to cisplatin resistance and therefore represent targets for preventing the development of cisplatin resistance and the recurrent disease during cisplatin therapy in ovarian cancer.
The present study elucidates the involvement of conformational fluctuation dynamics during chemically and thermally induced unfolding of human serum albumin (HSA) by fluorescence correlation spectroscopic (FCS) study, time-resolved fluorescence measurements, and circular dichroism (CD) spectroscopic methods. Two fluorescent probes, tetramethylrhodamine-5-maleimide (TMR) and N-(7-dimethylamino-4-methylcoumarin-3-yl) iodoacetamide (DACIA) were used to selectively label the domain I of HSA through the reaction with cys-34 for these studies. The guanidine hydrochloride (GnHCl) induced global structural change of HSA is monitored through its hydrodynamic radius (r(H)) and CD response, which is found to be two step in nature. In FCS experiment, along with the diffusion time component we have observed an exponential relaxation time component (τ(R)) that has been ascribed to the concerted chain dynamics of HSA. Unlike in the global structural change, we found that the τ(R) value changes in a different manner in the course of the unfolding. The dependence of τ(R) on the concentration of GnHCl was best fitted with a four state model, indicating the involvement of two intermediate states during the unfolding process, which were not observed through the CD response and r(H) data. The fluorescence lifetime measurement also supports our observation of intermediate states during the unfolding of HSA. However, no such intermediate states were observed during thermally induced unfolding of HSA.
The ps-μs dynamics of domain-III of human serum albumin (HSA) has been investigated using a new fluorescent marker selectively labeled to the Tyr-411 residue. The location of the marker has been confirmed using Förster resonance energy transfer (FRET) study. Steady state, time-resolved and single molecular level fluorescence techniques have been employed to understand the dynamics within the domain-III of HSA. It is found that solvent reorganization dynamics in domain-III is 1.7 times faster than that in domain-I. The timescale of the local rotational dynamics of domain-III is found to be 2.3 times faster than that of domain-I. Fluorescence correlation spectroscopic experiments reveal that domain-III of HSA has more conformational flexibility than domain-I. Together, the results deliver useful details of the local environment around the domain-III of HSA, which have not been explored earlier, mainly because of a lack of a suitable fluorescent marker for domain-III. The newly synthesized probe serves well as a site specific fluorescent marker for HSA, and can be used for further investigation of the ligand binding properties and enzymatic activity of domain-III of HSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.