General Circulation Models (GCMs) are widely used tools to assess potential impacts of global climate warming. However, their outputs are diffi cult to use in regional impact studies with regard to water resources because of their coarse spatial resolution. Downscaling techniques have emerged as useful tools to reduce the problem of discordant scales by deriving regional climate information from global climate data. The objective of this study is to test the capability of one of these techniques, the Statistical DownScaling Model (SDSM), to derive local scale temperature and precipitation data series that can be used as inputs to a hydrologic model for streamfl ow modelling. Three river basins located in the province of Québec are analyzed. Results show that the SDSM provides reasonable downscaling data when using predictors representing the observed current climate. However, the performance is less reliable when using GCM predictors.Résumé : Les modèles de la circulation générale (MCG) sont des outils utilisés pour évaluer les impacts potentiels du réchauffement climatique global. Cependant, il est diffi cile d'utiliser directement leurs données dans le cadre d'études d'impacts régionales, tel que celles reliées aux ressources en eau, en raison de leur résolution spatiale grossière. Le développement des techniques de réduction d'échelle spatiale a permis de réduire le problème d'échelles discordantes en dérivant l'information du climat régional à partir de données sur le climat global. L'objectif de cette étude est de tester la capacité d'une de ces techniques, le Statistical DownScaling Model (SDSM), à fournir des données à échelle réduite adéquates de température et de précipitation à un modèle hydrologique pour la modélisation des débits en rivière. Trois bassins versants de la province de Québec sont à l'étude. Les résultats démontrent que SDSM réduit raisonnablement l'échelle spatiale des données en utilisant les variables atmosphériques à grande échelle représentant le climat actuel observé. Cependant, la performance diminue avec celles simulées par un MCG.
298Canadian Water Resources Journal/Revue canadienne des ressources hydriques
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.