Action recognition is an application that, ideally, requires real-time results. We focus on single-image-based action recognition instead of video-based because of improved speed and lower cost of computation. However, a single image contains limited information, which makes single-image-based action recognition a difficult problem. To get an accurate representation of action classes, we propose three feature-stream-based shallow sub-networks (image-based, attention-image-based, and part-image-based feature networks) on the deep pose estimation network in a multitasking manner. Moreover, we design the multitask-aware loss function, so that the proposed method can be adaptively trained with heterogeneous datasets where only human pose annotations or action labels are included (instead of both pose and action information), which makes it easier to apply the proposed approach to new data on behavioral analysis on intelligent systems. In our extensive experiments, we showed that these streams represent complementary information and, hence, the fused representation is robust in distinguishing diverse fine-grained action classes. Unlike other methods, the human pose information was trained using heterogeneous datasets in a multitasking manner; nevertheless, it achieved 91.91% mean average precision on the Stanford 40 Actions Dataset. Moreover, we demonstrated the proposed method can be flexibly applied to multi-labels action recognition problem on the V-COCO Dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.