BACKGROUND Traumatic brain injury (TBI) is a considerable cause of morbidity and mortality in India and around the world. Head injury provides one of the major contributions to death and better practical understanding of intracranial injuries is essential to the forensic expert. The cross sectional CT imaging makes the radiologic contribution to forensic autopsy more valuable and may improve accuracy of forensic investigation. To this reason we retrospectively evaluated the patterns of skull fractures on CT scan imaging of deceased patients. METHODSThis cross sectional analysis was conducted in the department of forensic medicine Career institute of Medical Sciences, Lucknow over a period of two years 2013-2015. In this study, we reviewed images of all the deceased patients (died in our hospital) who underwent CT scanning at index admission for head injury. Demographic details and mode of injury was recorded from available data. Age was presented using mean and standard deviation, gender, mode of injury and type of skull fractures were presented as numbers and percentages. RESULTSLinear skull fractures were 172 out of which RTA due to unknown was 99 followed by fall of unknown reason was 32, RTA fall from two wheeler was 32. The cause of death in all these cases was due to head injury associated with fracture of skull or intracranial hemorrhages or brain injury. CONCLUSIONMajority of fatal head injuries are due to road traffic accidents (RTA) especially in younger and middle age, followed by fall from height. The common skull fracture type was linear (fissured) skull fractures followed by depressed fractures. Retrospective CT evaluated has reinforced reporting medico legal of these cases. KEYWORDSTraumatic brain injury (TBI), Road Traffic Accidents (RTA), Linear skull fractures, CT Scan. HOW TO CITE THIS ARTICLE:Singh BK. Spectrum of skull fractures in traumatic brain injury (TBI) -A cross sectional study.
Chronic hypoxia plays a key role in pulmonary hypertension and remodeling by inducing marked changes in gene expression. However, the regulatory effect of chronic hypoxia on microRNA (miR) expression in the lung has not yet been investigated. The purpose of this study was to determine which miRs are regulated by chronic hypoxia in the mouse lung and to determine their functional significance. We identified miRs altered in mouse lung after 3 weeks chronic hypoxia (10% O 2 (10 in 100) ) treatment by Microarray screening, verified miR target genes by reporter gene assays and Western blotting. Furthermore, we analyzed in vitro and in vivo functional significance for mouse pulmonary vascular artery smooth muscle cells. Among the miRs regulated, miR-223 was the most significantly decreased, a phenomenon verified by RT-qPCR. The insulin-like growth factor 1 receptor (IGF1R) is a known target of miR-223 and the binding of miR-223 to the 3’UTR of IGF1R was demonstrated. We found that IGF1R protein levels (but not RNA) were increased in lungs from hypoxic mice via a mechanism involving HIF1α/2α and reduced C/EBPα expression and transcription activity. Moreover, the expression of IGF1R was decreased following introduction of pre-mir-223 into pulmonary artery smooth muscle cells, an phenomenon coupled to attenuated IGF1-induced Akt phosphorylation, cell migration and proliferation. Decreasing endogenous miR-223 levels using a specific antagomir (3 weeks), increased pulmonary artery pressure and vessel muscularization. A similar phenomenon was observed in miR-223 -/y mice, which also demonstrated a more severe response to hypoxia than wild-type mice. In lungs from primary pulmonary hypertension (PPH) patients we also detected a decrease in miR-223 and increase in IGF1R expression. These data indicate that the downregulation of miR-223 may contribute to the IGF1-induced pulmonary smooth muscle migration by regulating the expression of its receptor and thus contributing to pulmonary remodeling and the development of pulmonary hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.