Activation of tetrodotoxin-resistant sodium channels contributes to action potential electrogenesis in neurons. Antisense oligonucleotide studies directed against Nav1.8 have shown that this channel contributes to experimental inflammatory and neuropathic pain. We report here the discovery of A-803467, a sodium channel blocker that potently blocks tetrodotoxin-resistant currents (IC50 ؍ 140 nM) and the generation of spontaneous and electrically evoked action potentials in vitro in rat dorsal root ganglion neurons. In recombinant cell lines, A-803467 potently blocked human Nav1.8 (IC50 ؍ 8 nM) and was >100-fold selective vs. human Nav1.2, Nav1.3, Nav1.5, and Nav1.
Photothermal therapy (PTT) is attracting increasing interest and becoming more widely used for skin cancer therapy in the clinic, as a result of its noninvasiveness and low systemic adverse effects. However, there is an urgent need to develop biocompatible PTT agents, which enable accurate imaging, monitoring, and diagnosis. Herein, a biocompatible Gd-integrated CuS nanotheranostic agent (Gd:CuS@BSA) was synthesized via a facile and environmentally friendly biomimetic strategy, using bovine serum albumin (BSA) as a biotemplate at physiological temperature. The as-prepared Gd:CuS@BSA nanoparticles (NPs) with ultrasmall sizes (ca. 9 nm) exhibited high photothermal conversion efficiency and good photostability under near-infrared (NIR) laser irradiation. With doped Gd species and strong tunable NIR absorbance, Gd:CuS@BSA NPs demonstrate prominent tumor-contrasted imaging performance both on the photoacoustic and magnetic resonance imaging modalities. The subsequent Gd:CuS@BSA-mediated PTT result shows high therapy efficacy as a result of their potent NIR absorption and high photothermal conversion efficiency. The immune response triggered by Gd:CuS@BSA-mediated PTT is preliminarily explored. In addition, toxicity studies in vitro and in vivo verify that Gd:CuS@BSA NPs qualify as biocompatible agents. A biodistribution study demonstrated that the NPs can undergo hepatic clearance from the body. This study highlights the practicality and versatility of albumin-mediated biomimetic mineralization of a nanotheranostic agent and also suggests that bioinspired Gd:CuS@BSA NPs possess promising imaging guidance and effective tumor ablation properties, with high spatial resolution and deep tissue penetration.
Distant metastasis is the main cause of breast cancer-related death; however, effective therapeutic strategies targeting metastasis are still scarce. This is largely attributable to the spatiotemporal intratumor heterogeneity during metastasis. Here we show that protein deacetylase SIRT7 is significantly downregulated in breast cancer lung metastases in human and mice, and predicts metastasis-free survival. SIRT7 deficiency promotes breast cancer cell metastasis, while temporal expression of Sirt7 inhibits metastasis in polyomavirus middle T antigen breast cancer model. Mechanistically, SIRT7 deacetylates and promotes SMAD4 degradation mediated by β-TrCP1, and SIRT7 deficiency activates transforming growth factor-β signaling and enhances epithelial-to-mesenchymal transition. Significantly, resveratrol activates SIRT7 deacetylase activity, inhibits breast cancer lung metastases, and increases survival. Our data highlight SIRT7 as a modulator of transforming growth factor-β signaling and suppressor of breast cancer metastasis, meanwhile providing an effective anti-metastatic therapeutic strategy.
In the development of vaccines for epithelial tumors, the key targets are MUC1 proteins, which have a variable number of tandem repeats (VNTR) bearing tumor-associated carbohydrate antigens (TACAs), such as Tn and STn. A major obstacle in vaccine development is the low immunogenicity of the short MUC1 peptide. To overcome this obstacle, we designed, synthesized, and evaluated several totally synthetic self-adjuvanting vaccine candidates with self-assembly domains. These vaccine candidates aggregated into fibrils and displayed multivalent B-cell epitopes under mild conditions. Glycosylation of Tn antigen on the Thr residue of PDTRP sequence in MUC1 VNTR led to effective immune response. These vaccines elicited a high level antibody response without any adjuvant and induced antibodies that recognized human breast tumor cells. These vaccines appeared to act through a T-cell independent pathway and were associated with the activation of cytotoxic T cells. These fully synthetic, molecularly defined vaccine candidates had several features that hold promise for anticancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.