Nucleic-acid detection via isothermal amplification and collateral cleavage of reporter molecules by CRISPR-associated enzymes is a promising alternative to quantitative polymerase chain reaction (qPCR). Here, we report the clinical validation of the SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) assay using the enzyme Cas13a from Leptotrichia wadei for the detection of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) -the virus that causes COVID-19 (coronavirus disease 2019) -in 154 nasopharyngeal and throat swab samples collected at Siriraj Hospital, Thailand. Within a detection limit of 42 RNA copies per
We report a bioinformatic workflow and subsequent discovery of a new polyethylene terephthalate (PET) hydrolase, which we named MG8, from the human saliva metagenome. MG8 has robust PET plastic degradation activities under different temperature and salinity conditions, outperforming several naturally occurring and engineered hydrolases in degrading PET. Moreover, we genetically encoded 2,3‐diaminopropionic acid (DAP) in place of the catalytic serine residue of MG8, thereby converting a PET hydrolase into a covalent binder for bio‐functionalization of PET. We show that MG8(DAP), in conjunction with a split green fluorescent protein system, can be used to attach protein cargos to PET as well as other polyester plastics. The discovery of a highly active PET hydrolase from the human metagenome—currently an underexplored resource for industrial enzyme discovery—as well as the repurposing of such an enzyme into a plastic functionalization tool, should facilitate ongoing efforts to degrade and maximize reusability of PET.
We report a bioinformatic workflow and subsequent discovery of a new polyethylene terephthalate (PET) hydrolase, which we named MG8, from the human saliva metagenome. MG8 has robust PET plastic degradation activities under different temperature and salinity conditions, outperforming several naturally occurring and engineered hydrolases in degrading PET. Moreover, we genetically encoded 2,3-diaminopropionic acid (DAP) in place of the catalytic serine residue of MG8, thereby converting a PET hydrolase into a covalent binder for bio-functionalization of PET. We show that MG8(DAP), in conjunction with a split green fluorescent protein system, can be used to attach protein cargos to PET as well as other polyester plastics. The discovery of a highly active PET hydrolase from the human metagenome-currently an underexplored resource for industrial enzyme discovery-as well as the repurposing of such an enzyme into a plastic functionalization tool, should facilitate ongoing efforts to degrade and maximize reusability of PET.
Bioremediation. The discovery of MG8, an efficient polyethylene terephthalate (PET) hydrolase enzyme from the human saliva metagenome, is reported by Worawan Bhanthumnavin, Chayasith Uttamapinant et al. in their Research Article (e202203061). Aside from its plastic degradation capability, MG8 was further engineered via genetic code expansion into a covalent binder of PET plastic and can be used to attach protein payloads to PET and other polyesters.
Bioremediation. Über die Entdeckung von MG8, eines effizienten Polyethylenterephthalat(PET)‐Hydrolase‐Enzyms aus dem Metagenom des menschlichen Speichels, berichten Worawan Bhanthumnavin, Chayasith Uttamapinant et al. in ihrem Forschungsartikel (e202203061). Abgesehen von seiner Fähigkeit, Kunststoffe abzubauen, wurde MG8 durch Erweiterung des genetischen Codes zu einem kovalenten Binder für PET‐Kunststoff weiterentwickelt und kann dazu verwendet werden, Proteinfrachten an PET und andere Polyester zu binden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.