The
operational stability of perovskite solar cells (PSCs) remains a limiting
factor in their commercial implementation. We studied the long-term
outdoor stability of ITO/SnO2/Cs0.05((CH3NH3)0.15(CH(NH2)2)0.85)0.95PbI2.55Br0.45/spiro-OMeTAD/Au cells, as well as the dynamics of their degradation,
under simulated sunlight indoors and their recovery in the dark. The
extent of overall degradation was found to depend on processes occurring
both under illumination and in the dark, i.e., during the daytime
and nighttime, with the dynamics varying with cell aging. Full recovery
of efficiency in the dark was observed for cells at early degradation
stages. Further cell degradation resulted in recovery times much longer
than one night, appearing as irreversible degradation under real operational
conditions. At later degradation stages, very different dynamics were
observed: short-circuit current density and fill factor exhibited
a pronounced drop upon light turn-off but strong improvement under
subsequent illumination. The interplay of reversible and irreversible
degradation processes with different recovery dynamics was demonstrated
to result in changes in the cell’s diurnal PCE dependence during
its operational lifespan under real sunlight conditions.
We propose a new approach for assessing the lifetimes of perovskite photovoltaics based on daily energy output which accounts for reversible diurnal changes.
During the last few years, textile solar cells with planar and fiber-shaped configurations have attracted enormous research interest. These flexible-type solar cells have a huge potential applicability in self-powered and batteryless electronics, which will impact many sectors, and particularly Internet of Things. Textile solar cells are lightweight, super-flexible, formable, and foldable. Thus, they could be ideal power-harvester alternatives to common flexible solar cells required in smart textiles, electronic textiles, and wearable electronic devices. This review presents a brief overview to fiber-shaped and planar-shaped solar cells, and it introduces the most recent research reports on the different types of textile solar cells, including their fabrication techniques. Finally, their current challenges and limitations with respect to their fabrication methods, and the issues encounter for their implementation and integration in novel devices, are also described.
Standard and inverted configuration small molecule OPV cells incorporating bathocuproine (BCP) as electron transport and exciton blocking layer is investigated, demonstrating that 2 mm2 standard and inverted cells display a maximum performance for BCP thicknesses of 10 nm and 1.5 nm, respectively. The reason for the different optimum BCP thicknesses for the two device configurations is the BCP-metal complex formed between the Ag electrode and the BCP layer in the standard configuration OPV devices. Interestingly, at optimum BCP thicknesses, the inverted OPV cells outperform the standard devices. Upon up-scaling of the device area of the cells from 2 mm2 to 10 and 100 mm2, device failure becomes prominent for the inverted OPV cells, due to aggregation of the evaporated BCP layer on the ITO surface. This demonstrates that although BCP can be adopted for efficient ETL in inverted configuration OPV devices on small scale, it is not suitable for device up-scaling due to severely decreasing device yields. In this work, a possible solution where an ultrathin layer of C70 is evaporated between the ITO and BCP layer is proposed. It is demonstrated that the proposed solution holds a strong potential to minimize the device failures of the BCP based inverted OPV cells to a significant extent, while maintaining good device performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.