Abstract:To improve the feed quality removal of lignin from plant biomass is essential. To improve the activity of laccase of white rot fungi, aromatic inducers are used. In this study three inducers [Resorcinol (5mM and 10mM), Xylidine and Anisaldehyde] to induce the production of laccase enzyme in the culture of fungus: Cyathus stercoreus. Resorcinol (10mM) was found to be the best inducer among the rest. The enzyme activity was observed highest on the 8 th day of induction (226.7U/ml). Protein content was also increased with the age of the culture. 80% ammonium sulphate was suitable for precipitating the laccase enzyme for culture filtrate. The laccase production can be enhanced with inducers and can be further used for the removal of lignin from the plant biomass.
Background
Fingerprints are useful evidence for establishing identities. Development and detection of fingerprints are of immense help in criminal investigation. However, forged fingerprints identical to the real ones are emerging as a worldwide problem. Existing methods for development of fingerprints (powder method/iodine fuming method/ninhydrin test/AgNO3) fail to distinguish between real and forged fingerprints when forged fingerprints are fortified with salts and amino acids. The present study was conducted with the objective to test applicability of C stain for real and forged fingerprint differentiation.
Methodology
C stain was applied on real and forged fingerprints in combination with conventional methods and was evaluated on the basis of development and differentiation of real and forged fingerprints.
Results
The proposed technique is successful in differentiating between real and forged fingerprints. Colour difference between real and forged fingerprints was observed by taking a combination of C stain with ninhydrin, black powder and iodine fuming, one at a time.
Conclusion
C stain method is an effective technique for distinguishing forged fingerprints from the real ones. It works as a distinction tool even when used in combination with existing development methods.
This study focuses on the screening and identification of bacteria, which can produce alkaline xylanase at alkaline pH and high temperature. Bacterial isolates from enriched decaying soil, capable of hydrolyzing xylan were screened. Selected and purified 13 bacterial colonies (Bacilli and Kurthia) grown on xylan- nutrient agar slants, were activated and transferred into the fermentation medium. Three highest xylanase producing isolates (Bacillus badius, Kurthia gibsonii, Bacillus circulans) were selected for further studies and the xylanase produced by them were screened for their kinetic properties. The optimum temperature for the activity of the xylanase from Isolates A was 50oC; and for Isolate B was 40oC, while that of Isolate C was 30oC. The optimum pH value for the xylanase from isolate A and B was 9.0. In addition, the xylanase was also capable of producing high-quality xylo-oligosaccharides, which indicated its application potential not only in pulp bio-bleaching processes but also in the nutraceutical industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.