Zircon from Ratanakiri Province, northeastern Cambodia, is well known in the gem trade for its vivid blue colour that results from heat treatment. The untreated brown material turns blue under reducing conditions at ~900-1,000°C. Ratanakiri zircon is characterised by remarkably low contents of trace elements. In particular, the actinides have low concentrations (e.g. approximately 120 ppm U and 95 ppm Th). Together with the very young age of the zircon (<1 million years [Ma]), this results in an extremely low self-irradiation dose, which in turn is in agreement with its non-radiation-damaged, nearly perfectly crystalline state. The heat treatment, therefore, does not result in detectable changes in the zircon's structural state. The cause of the blue colour, presumably related to a valence change upon heating in the reducing environment, is still under debate. The absorption of the treated Ratanakiri zircon is decidedly different from that of blue U 4+-doped and blue V 4+-doped synthetic ZrSiO 4. Absorption spectra show a strongly pleochroic band at 18,200-13,000 cm-1 (corresponding to ~550-770 nm wavelength) that is clearly responsible for the treated blue colour; however, its assignment remains unresolved.
Here, we document a detailed characterisation of two zircon gemstones, GZ7 and GZ8. Both stones had the same mass at 19.2 carats (3.84 g) each; both came from placer deposits in the Ratnapura district, Sri Lanka. The U‐Pb data are in both cases concordant within the uncertainties of decay constants and yield weighted mean 206Pb/238U ages (95% confidence uncertainty) of 530.26 Ma ± 0.05 Ma (GZ7) and 543.92 Ma ± 0.06 Ma (GZ8). Neither GZ7 nor GZ8 have been subjected to any gem enhancement by heating. Structure‐related parameters correspond well with the calculated alpha doses of 1.48 × 1018 g−1 (GZ7) and 2.53 × 1018 g−1 (GZ8), respectively, and the (U‐Th)/He ages of 438 Ma ± 3 Ma (2s) for GZ7 and 426 Ma ± 9 Ma (2s) for GZ8 are typical of unheated zircon from Sri Lanka. The mean U mass fractions are 680 μg g−1 (GZ7) and 1305 μg g−1 (GZ8). The two zircon samples are proposed as reference materials for SIMS (secondary ion mass spectrometry) U‐Pb geochronology. In addition, GZ7 (Ti mass fractions 25.08 μg g−1 ± 0.18 μg g−1; 95% confidence uncertainty) may prove useful as reference material for Ti‐in‐zircon temperature estimates.
Natural tanzanites usually show strongly trichroic coloration from violet to blue, and brown colors in different directions. However, this characteristic is easily changed to violet-blue dichroism after heat treatment. Moreover, the cause of color modification after heating is still controversial. A few researchers have previously suggested that trace amounts of either vanadium or titanium substituted in aluminum site should be the main determinant of color after the heat treatment. Alteration of either V3+ to V4+ or Ti3+ to Ti4+ may relate to light absorption around 450–460 nm, which is the main cause. UV/vis/NIR absorption spectroscopy and X-ray absorption spectroscopy (XAS), a utility of synchrotron radiation, were applied for this experiment. As a result, the violet-blue absorption band (centered around 450–460 nm) as well as green absorption band (centered around 520 nm) were obviously decreased along the c-axis after heating, and XAS analysis indicated the increasing of the oxidation state of vanadium. This result was well supported by the chemical composition of samples. Consequently, vanadium was strongly suggested as the significant coloring agent in tanzanite after heat treatment.
In the past several years, Mozambique has emerged as one of the world's most important sources of ruby, and unheated stones from this country are in particularly strong demand. Nevertheless, it is common for these rubies to undergo low-temperature heating (~1,000°C or below) to slightly improve their colour. The treated stones may show very subtle or no alteration of internal features (e.g. mineral inclusions, 'fingerprints', needles, 'silk', etc.). However, 'iron-stained' surface-reaching fractures in the rubies commonly display a noticeably more intense colour after heating. Raman and FTIR spectroscopy were used to document a transition from goethite to hematite within stained fractures in samples heated to 500°C and 600°C. The identification of hematite within such fractures provides key evidence for the low-temperature heat treatment of Mozambique ruby.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.