Aiming at the problem of gliding near space hypersonic vehicle (NSHV) trajectory prediction, a trajectory prediction method based on aerodynamic acceleration empirical mode decomposition (EMD) is proposed. The method analyzes the motion characteristics of the skipping gliding NSHV and verifies that the aerodynamic acceleration of the target has a relatively stable rule. On this basis, EMD is used to extract the trend of aerodynamic acceleration into multiple sub-items, and aggregate sub-items with similar attributes. Then, a prior basis function is set according to the aerodynamic acceleration stability rule, and the aggregated data are fitted by the basis function to predict its future state. After that, the prediction data of the aerodynamic acceleration are used to drive the system to predict the target trajectory. Finally, experiments verify the effectiveness of the method. In addition, the distribution of prediction errors in space is discussed, and the reasons are analyzed.
The particle filter (PF) algorithm is one of the most commonly used algorithms for maneuvering target tracking. The traditional PF maps from multi-dimensional information to onedimensional information during particle weight calculation, and the incorrect transmission of information leads to the fact that the particle prediction information does not match the weight information, and its essence is the reduction of the information entropy of the useful information. To solve this problem, a dual channel independent filtering method is proposed based on the idea of equalization mapping. Firstly, the particle prediction performance is described by particle manipulations of different dimensions, and the accuracy of particle prediction is improved. The improvement of particle degradation of this algorithm is analyzed in the aspects of particle weight and effective particle number. Secondly, according to the problem of lack of particle samples, the new particles are generated based on the filtering results, and the particle diversity is increased. Finally, the introduction of the graphics processing unit (GPU) parallel computing the platform, the "channel-level" and "particlelevel" parallel computing the program are designed to accelerate the algorithm. The simulation results show that the algorithm has the advantages of better filtering precision, higher particle efficiency and faster calculation speed compared with the traditional algorithm of the CPU platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.