Current Intelligent Tutoring Systems (ITS) provide better recommendations for students to improve their learning. These recommendations mainly involve students' performance prediction, which remains problematic for ITS, despite the significant improvements made by prediction methods such as Matrix Factorization (MF). The present contribution therefore aims to provide a solution to this prediction problem by proposing an approach that combines Multiple Linear Regression (Modelling Emotional Impact) and a Weighted Multi-Relational Matrix Factorization model to take advantage of both student cognitive and emotional faculties. This approach takes into account not only the relationships that exist between students, tasks and skills, but also students' emotions. Experimental results on a set of pedagogical data collected from 250 students show that our approach significantly improves the results of Student Performance Prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.