Bayesian network (BN), a simple graphical notation for conditional independence assertions, is promised to represent the probabilistic relationships between diseases and symptoms. Learning the structure of a Bayesian network classifier (BNC) encodes conditional independence assumption between attributes, which may deteriorate the classification performance. One major approach to mitigate the BNC's primary weakness (the attributes independence assumption) is the locally weighted approach. And this type of approach has been proved to achieve good performance for naive Bayes, a BNC with simple structure. However, we do not know whether or how effective it works for improving the performance of the complex BNC. In this paper, we first do a survey on the complex structure models for BNCs and their improvements, then carry out a systematically experimental analysis to investigate the effectiveness of locally weighted method for complex BNCs, e.g., tree-augmented naive Bayes (TAN), averaged one-dependence estimators AODE and hidden naive Bayes (HNB), measured by classification accuracy (ACC) and the area under the ROC curve ranking (AUC). Experiments and comparisons on 36 benchmark data sets collected from University of California, Irvine (UCI) in Weka system demonstrate that locally weighting technologies just slightly outperforms unweighted complex BNCs on ACC and AUC. In other words, although locally weighting could significantly improve the performance of NB (a BNC with simple structure), it could not work well on BNCs with complex structures. This is because the performance improvements of BNCs are attributed to their structures not the locally weighting.
The remarkable success of convolutional neural networks (CNNs) in computer vision tasks is shown in large-scale datasets and high-performance computing platforms. However, it is infeasible to deploy large CNNs on resource constrained platforms, such as embedded devices, on account of the huge overhead. To recognize the label numbers of industrial black material product and deploy deep CNNs in real-world applications, this research uses an efficient method to simultaneously (a) reduce the network model size and (b) lower the amount of calculation without compromising accuracy. More specifically, the method is implemented by pruning channels and corresponding filters that are identified as having a trivial effect on the output accuracy. In this paper, we prune VGG-16 to obtain a compact network called LeanNet, which gives a 25× reduction in model size and a 4.5× reduction in float point operations (FLOPs), while the accuracy on our dataset is close to the original accuracy by retraining the network. Besides, we also find that LeanNet could achieve better performance on reductions in model size and computation compared to some lightweight networks like MobileNet and SqueezeNet, which are widely used in engineering applications. This research has good application value in the field of industrial production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.