Near-unity energy transfer efficiency has been widely observed in natural photosynthetic complexes. This phenomenon has attracted broad interest from different fields, such as physics, biology, chemistry, and material science, as it may offer valuable insights into efficient solar-energy harvesting. Recently, quantum coherent effects have been discovered in photosynthetic light harvesting, and their potential role on energy transfer has seen the heated debate. Here, we perform an experimental quantum simulation of photosynthetic energy transfer using nuclear magnetic resonance (NMR). We show that an N-chromophore photosynthetic complex, with arbitrary structure and bath spectral density, can be effectively simulated by a system with log 2 N qubits. The computational cost of simulating such a system with a theoretical tool, like the hierarchical equation of motion, which is exponential in N, can be potentially reduced to requiring a just polynomial number of qubits N using NMR quantum simulation. The benefits of performing such quantum simulation in NMR are even greater when the spectral density is complex, as in natural photosynthetic complexes. These findings may shed light on quantum coherence in energy transfer and help to provide design principles for efficient artificial light harvesting.
Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and experiments. Coherent control of nuclear spin dynamics is a powerful tool for the experimental implementation of quantum schemes in liquid and solid nuclear magnetic resonance (NMR) system, especially in liquid-state NMR. Compared with other quantum information processing systems, the NMR platform has the advantages such as the long coherence time, the precise manipulation, and well-developed quantum control techniques, which make it possible to accurately control a quantum system with up to 12-qubits. Extensive applications of liquid-state NMR spectroscopy in quantum information processing such as quantum communication, quantum computing, and quantum simulation have been thoroughly studied over half a century. This article introduces the general principles of NMR quantum information processing, and reviews the new-developed techniques. The review will also include the recent achievements of the experimental realization of quantum algorithms for machine learning, quantum simulations for high energy physics, and topological order in NMR. We also discuss the limitation and prospect of liquid-state NMR spectroscopy and the solid-state NMR systems as quantum computing in the article.
Quantum adiabatic algorithm is of vital importance in quantum computation field. It offers us an alternative approach to manipulate the system instead of quantum gate model. Recently, an interesting work [arXiv:1805.10549] indicated that we can solve linear equation system via algorithm inspired by adiabatic quantum computing. Here we demonstrate the algorithm and realize the solution of 8-dimensional linear equations Ax = b in a 4-qubit nuclear magnetic resonance system. The result is by far the solution of maximum-dimensional linear equation with a limited number of qubits in experiments, which includes some ingenious simplifications. Our experiment provides the new possibility of solving so many practical problems related to linear equations systems and has the potential applications in designing the future quantum algorithms.
The puzzling properties of quantum mechanics, wave-particle duality, entanglement and superposition, were dissected experimentally at past decades. However, hidden-variable (HV) models, based on three classical assumptions of wave-particle objectivity, determinism and independence, strive to explain or even defeat them. The development of quantum technologies enabled us to test experimentally the predictions of quantum mechanics and HV theories. Here, we report an experimental demonstration of an entanglement-assisted quantum delayed-choice scheme using a liquid nuclear magnetic resonance quantum information processor. This scheme we realized is based on the recently proposed scheme [Nat. Comms. 5:4997(2014)], which gave different results for quantum mechanics and HV theories. In our experiments, the intensities and the visibilities of the interference are in consistent the theoretical prediction of quantum mechanics. The results imply that a contradiction is appearing when all three assumptions of HV models are combined, though any two of the above assumptions are compatible with it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.