Patients with metastatic prostate cancer (PCa) have a poorer prognosis than patients with organ-confined tumors. We strove to uncover the proteome signature of primary PCa and associated lymph node metastases (LNMs) in order to identify proteins that may indicate or potentially promote metastases formation. We performed a proteomic comparative profiling of PCa tissue from radical prostatectomy (RPE) of patients without nodal metastases or relapse at the time of surgical resection (n = 5) to PCa tissue from RPE of patients who suffered from nodal relapse (n = 5). For the latter group, we also included patient-matched tissue of the nodal metastases. All samples were formalin fixed and paraffin embedded. We identified and quantified more than 1200 proteins by liquid chromatography tandem mass spectrometry with subsequent label-free quantification. An increase of ribosomal or proteasomal proteins in LNM (compared to corresponding PCa) became apparent, while extracellular matrix components rather decreased. Immunohistochemistry (IHC) corroborated accumulation of poly-(ADP-ribose)-polymerase 1 and N-myc-downstream-regulated-gene 3, alpha/beta hydrolase domain-containing protein 11, and protein phosphatase slingshot homolog 3 in LNM. These findings strengthen the present interest in examining PARP inhibitors for the treatment of aggressive PCa. IHC also corroborated increased abundance of retinol dehydrogenase 11 in metastasized primary PCa compared to organ-confined PCa. Generally, metastasizing primary tumors were characterized by an enrichment of proteins involved in cellular lipid metabolic processes with concomitant decrease of cell adhesion proteins. This study highlights the usefulness of a combined proteomic-IHC approach to explore novel aspects in tumor biology. Our initial results open novel opportunities for follow-up studies.
Patients of the von Hippel-Lindau (VHL) disease frequently develop clear cell renal cell carcinoma (ccRCC). Using archived, formalin-fixed, paraffin-embedded (FFPE) samples, we sought to determine global proteome alterations that distinguish ccRCC tissue from adjacent, non-malignant kidney tissue in VHL-patients. Our quantitative proteomic analysis clearly discriminated tumor and non-malignant tissue. Significantly dysregulated proteins were distinguished using the linear models for microarray data algorithm. In the ccRCC tissue, we noticed a predominant under-representation of proteins involved in the tricarboxylic acid cycle and an increase in proteins involved in glycolysis. This profile possibly represents a proteomic fingerprint of the “Warburg effect”, which is a molecular hallmark of ccRCC. Furthermore, we observed an increase in proteins involved in extracellular matrix organization. We also noticed differential expression of many exoproteases in the ccRCC tissue. Of particular note were opposing alterations of Xaa-Pro Aminopeptidases-1 and -2 (XPNPEP-1 and -2): a strong decrease of XPNPEP-2 in ccRCC was accompanied by abundant presence of the related protease XPNPEP-1. In both cases, we corroborated the proteomic results by immunohistochemical analysis of ccRCC and adjacent, non-malignant kidney tissue of VHL patients. To functionally investigate the role of XPNPEP-1 in ccRCC, we performed small-hairpin RNA mediated XPNPEP-1 expression silencing in 786-O ccRCC cells harboring a mutated VHL gene. We found that XPNPEP-1 expression dampens cellular proliferation and migration. These results suggest that XPNPEP-1 is likely an anti-target in ccRCC. Methodologically, our work further validates the robustness of using FFPE material for quantitative proteomics.
BackgroundRenal oncocytomas (ROs) are benign epithelial tumors of the kidney whereas chromophobe renal cell carcinoma (chRCCs) are malignant renal tumors. The latter constitute 5–7% of renal neoplasias. ROs and chRCCs show pronounced molecular and histological similarities, which renders their differentiation demanding. We aimed for the differential proteome profiling of ROs and early-stage chRCCs in order to better understand distinguishing protein patterns.MethodsWe employed formalin-fixed, paraffin-embedded samples (six RO cases, six chRCC cases) together with isotopic triplex dimethylation and a pooled reference standard to enable cohort-wide quantitative comparison. For lysosomal-associated membrane protein 1 (LAMP1) and integrin alpha-V (ITGAV) we performed corroborative immunohistochemistry (IHC) in an extended cohort of 42 RO cases and 31 chRCC cases.ResultsAt 1% false discovery rate, we identified > 3900 proteins, of which > 2400 proteins were consistently quantified in at least four RO and four chRCC cases. The proteomic expression profiling discriminated ROs and chRCCs and highlighted established features such as accumulation of mitochondrial proteins in ROs together with emphasizing the accumulation of endo-lysosomal proteins in chRCCs. In line with the proteomic data, IHC showed enrichment of LAMP1 in chRCC and of ITGAV in RO.ConclusionWe present one of the first differential proteome profiling studies on ROs and chRCCs and highlight differential abundance of LAMP1 and ITGAV in these renal tumors.Electronic supplementary materialThe online version of this article (10.1186/s12014-018-9200-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.