a b s t r a c tUnilateral hearing loss constitutes a field of growing interest in the scientific community. In fact, this kind of patients represent a unique and physiological way to investigate how neuroplasticity overcame unilateral deafferentation by implementing particular strategies that produce apparently next-to-normal hearing behavioural performances. This explains why such patients have been underinvestigated for a long time. Thanks to the availability of techniques able to study the cerebral activity underlying the mentioned behavioural outcomes, the aim of the present research was to elucidate whether different electroencephalographic (EEG) patterns occurred in unilateral hearing loss (UHL) children in comparison to normal hearing (NH) controls during speech-in-noise listening. Given the intrinsic lateralized nature of such patients, due to the unilateral side of hearing impairment, the experimental question was to assess whether this would reflect a different EEG pattern while performing a word in noise recognition task varying the direction of the noise source. Results showed a correlation between the period of deafness and the cortical activity asymmetry toward the hearing ear side in the frontal, parietal and occipital areas in all the experimental conditions. Concerning alpha and beta activity in the frontal and central areas highlighted that in the NH group, the lateralization was always left-sided during the Quiet condition, while it was right-sided in noise conditions; this evidence was not, however, detected also in the UHL group. In addition, focusing on the theta and alpha activity in the frontal areas (Broca area) during noise conditions, while the activity was always left-lateralized in the NH group, it was ipsilateral to the direction of the background noise in the UHL group, and of a weaker extent than in NH controls. Furthermore, in noise conditions, only the UHL group showed a higher theta activity in the temporal areas ipsilateral to the side where the background noise was directed to. Finally, in the case of bilateral noise (background noise and word signal both coming from the same two sources), the theta and alpha activity in the frontal areas (Broca area) was left-lateralized in the case of the NH group and lateralized towards the side of the better hearing ear in the case of the UHL group.
In deaf children, huge emphasis was given to language; however, emotional cues decoding and production appear of pivotal importance for communication capabilities. Concerning neurophysiological correlates of emotional processing, the gamma band activity appears a useful tool adopted for emotion classification and related to the conscious elaboration of emotions. Starting from these considerations, the following items have been investigated: (i) whether emotional auditory stimuli processing differs between normal-hearing (NH) children and children using a cochlear implant (CI), given the non-physiological development of the auditory system in the latter group; (ii) whether the age at CI surgery influences emotion recognition capabilities; and (iii) in light of the right hemisphere hypothesis for emotional processing, whether the CI side influences the processing of emotional cues in unilateral CI (UCI) children. To answer these matters, 9 UCI (9.47 ± 2.33 years old) and 10 NH (10.95 ± 2.11 years old) children were asked to recognize nonverbal vocalizations belonging to three emotional states: positive (achievement, amusement, contentment, relief), negative (anger, disgust, fear, sadness), and neutral (neutral, surprise). Results showed better performances in NH than UCI children in emotional states recognition. The UCI group showed increased gamma activity lateralization index (LI) (relative higher right hemisphere activity) in comparison to the NH group in response to emotional auditory cues. Moreover, LI gamma values were negatively correlated with the percentage of correct responses in emotion recognition. Such observations could be explained by a deficit in UCI children in engaging the left hemisphere for more demanding emotional task, or alternatively by a higher conscious elaboration in UCI than NH children. Additionally, for the UCI group, there was no difference between the CI side and the contralateral side in gamma activity, but a higher gamma activity in the right in comparison to the left hemisphere was found. Therefore, the CI side did not appear to influence the physiologic hemispheric lateralization of emotional processing. Finally, a negative correlation was shown between the age at the CI surgery and the percentage of correct responses in emotion recognition and then suggesting the occurrence of a sensitive period for CI surgery for best emotion recognition skills development.
Over the past few decades, antismoking public service announcements (PSAs) have been used by governments to promote healthy behaviours in citizens, for instance, against drinking before the drive and against smoke. Effectiveness of such PSAs has been suggested especially for young persons. By now, PSAs efficacy is still mainly assessed through traditional methods (questionnaires and metrics) and could be performed only after the PSAs broadcasting, leading to waste of economic resources and time in the case of Ineffective PSAs. One possible countermeasure to such ineffective use of PSAs could be promoted by the evaluation of the cerebral reaction to the PSA of particular segments of population (e.g., old, young, and heavy smokers). In addition, it is crucial to gather such cerebral activity in front of PSAs that have been assessed to be effective against smoke (Effective PSAs), comparing results to the cerebral reactions to PSAs that have been certified to be not effective (Ineffective PSAs). The eventual differences between the cerebral responses toward the two PSA groups will provide crucial information about the possible outcome of new PSAs before to its broadcasting. This study focused on adult population, by investigating the cerebral reaction to the vision of different PSA images, which have already been shown to be Effective and Ineffective for the promotion of an antismoking behaviour. Results showed how variables as gender and smoking habits can influence the perception of PSA images, and how different communication styles of the antismoking campaigns could facilitate the comprehension of PSA's message and then enhance the related impact.
Human factors’ aim is to understand and evaluate the interactions between people and tasks, technologies, and environment. Among human factors, it is possible then to include the subjective reaction to external stimuli, due to individual’s characteristics and states of mind. These processes are also involved in the perception of antismoking public service announcements (PSAs), the main tool for governments to contrast the first cause of preventable deaths in the world: tobacco addiction. In the light of that, in the present article, it has been investigated through the comparison of different electroencephalographic (EEG) indices a typical item known to be able of influencing PSA perception, that is gender. In order to investigate the neurophysiological underpinnings of such different perception, we tested two PSAs: one with a female character and one with a male character. Furthermore, the experimental sample was divided into men and women, as well as smokers and nonsmokers. The employed EEG indices were the mental engagement (ME: the ratio between beta activity and the sum of alpha and theta activity); the approach/withdrawal (AW: the frontal alpha asymmetry in the alpha band); and the frontal theta activity and the spectral asymmetry index (SASI: the ratio between beta minus theta and beta plus theta). Results suggested that the ME and the AW presented an opposite trend, with smokers showing higher ME and lower AW than nonsmokers. The ME and the frontal theta also evidenced a statistically significant interaction between the kind of the PSA and the gender of the observers; specifically, women showed higher ME and frontal theta activity for the male character PSA. This study then supports the usefulness of the ME and frontal theta for purposes of PSAs targeting on the basis of gender issues and of the ME and the AW and for purposes of PSAs targeting on the basis of smoking habits.
The neurophysiological analysis of cooperation has evolved over the past 20 years, moving towards the research of common patterns in neurophysiological signals of people interacting. Social Physiological Compliance (SPC) and Hyperscanning represent two frameworks for the joint analysis of autonomic and brain signals respectively. Each of the two approaches allows to know about a single layer of cooperation according to the nature of these signals: SPC provides information mainly related to emotions, and Hyperscanning that related to cognitive aspects. In this work, after the analysis of the state of the art of SPC and Hyperscanning, we explored the possibility to unify the two approaches creating a complete neurophysiological model for cooperation considering both affective and cognitive mechanisms. We synchronously recorded electrodermal activity, cardiac and brain signals of 14 cooperative dyads. Time series from these signals were extracted and Multivariate Granger Causality was computed. The results showed that only when subjects in a dyad cooperate there is a statistically significant causality between the multivariate variables representing each subject. Moreover, the entity of this statistical relationship correlates with the dyad’s performance. Finally, given the novelty of this approach and its exploratory nature, we provided its strengths and limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.