BackgroundStarch is the main source of energy in commonly used pig diets. Besides effects related to the extent of starch digestion, also several effects related to variation in digestion rate have recently been demonstrated in non-ruminants. Different rates of starch digestion in animals and in in vitro models have been reported, depending on the botanic origin of starch. Starches from different botanic sources differ widely in structural and molecular properties. Predicting the effect of starch properties on in vitro digestion kinetics based on existing literature is hampered by incomplete characterization of the starches, or by a selective choice of starches from a limited number of botanic sources. This research aimed to analyse the relationships between starch properties and in vitro digestion kinetics of pure starches isolated from a broad range of botanic origins, which are used in non-ruminant diets or have a potential to be used in the future. Therefore we studied starch digestion kinetics of potato, pea, corn, rice, barley, and wheat starches, and analysed the granule diameter, number of pores, type and amount of crystalline structure, amylose content and amylopectin side-chain length of all starches.ResultsMultivariate analysis revealed strong correlations among starch properties, leading us to conclude that effects of most starch characteristics are strongly interrelated. Across all analysed botanic sources, crystalline type and amylopectin chain length showed the strongest correlation with in vitro digestion kinetics. Increased percentages of A–type crystalline structure and amylopectin side chains of DP 6–24 both increased the rate of digestion. In addition, within, but not across, (clusters of) botanic sources, a decrease in amylose content and increase in number of pores correlated positively with digestion kinetics.ConclusionThe type of crystalline structure and amylopectin chain length distribution of starch correlate significantly with digestion kinetics of starches across botanic sources in an in vitro pig model. Variation in digestion kinetics across botanic sources is not additively explained by other starch properties measured, but appears to be confined within botanical sources.Electronic supplementary materialThe online version of this article (10.1186/s40104-018-0303-8) contains supplementary material, which is available to authorized users.
This study aimed to examine in vivo starch digestion kinetics and to unravel the mechanisms of starch hydrolysing enzymes. Ninety pigs (23 (sd 2·1) kg body weight) were assigned to one of nine treatments in a 3×3 factorial arrangement, with starch source (barley, maize, high-amylose (HA) maize) and form (isolated, within cereal matrix, extruded) as factors. We determined starch digestion coefficients (DC), starch breakdown products and digesta retention times in four small-intestinal segments (SI1–4). Starch digestion in SI2 of pigs fed barley and maize, exceeded starch digestion of pigs fed HA maize by 0·20–0·33 DC units (P<0·01). In SI3–4, barley starch were completely digested, whereas the cereal matrix of maize hampered digestion and generated 16 % resistant starch in the small intestine (P<0·001). Extrusion increased the DC of maize and HA maize starch throughout the small intestine but not that of barley (P<0·05). Up to 25 % of starch residuals in the proximal small intestine of pigs was present as glucose and soluble α(1–4) maltodextrins. The high abundance of glucose, maltose and maltotriose in the proximal small intestine indicates activity of brush-border enzymes in the intestinal lumen, which is exceeded by α-amylase activity. Furthermore, we found that in vivo starch digestion exceeded our in vitro predictions for rapidly digested starch, which indicates that the role of the stomach on starch digestion is currently underestimated. Consequently, in vivo glucose release of slowly digestible starch is less gradual than expected, which challenges the prediction quality of the in vitro assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.