In cutaneous Leishmaniasis the parasitic control in human host macrophages is still poorly understood. We found an increased expression of the human cathelicidin CAMP in skin lesions of Ethiopian patients with cutaneous leishmaniasis. Vitamin D driven, Cathelicidin-type antimicrobial peptides (CAMP) play an important role in the elimination of invading microorganisms. Recombinant cathelicidin was able to induce cell-death characteristics in Leishmania in a dose dependent manner. Using human primary macrophages, we demonstrated pro-inflammatory macrophages (hMDM1) to express a higher level of human cathelicidin, both on gene and protein level, compared to anti-inflammatory macrophages (hMDM2). Activating the CAMP pathway using Vitamin D in hMDM1 resulted in a cathelicidin-mediated-Leishmania restriction. Finally, a reduction of cathelicidin in hMDM1, using a RNA interference (RNAi) approach, increased Leishmania parasite survival. In all, these data show the human cathelicidin to contribute to the innate immune response against Leishmaniasis in a human primary cell model.
The COVID-19 pandemic highlights the importance of efficient and safe vaccine development. Vaccine adjuvants are essential to boost and tailor the immune response to the corresponding pathogen. To allow for an educated selection, we assessed the effect of different adjuvants on human monocyte-derived dendritic cells (DCs) and their ability to polarize innate and adaptive immune responses. In contrast to commonly used adjuvants, such as aluminum hydroxide, Toll-like receptor (TLR) agonists induced robust phenotypic and functional DC maturation. In a DC-lymphocyte coculture system, we investigated the ensuing immune reactions. While monophosphoryl lipid A synthetic, a TLR4 ligand, induced checkpoint inhibitors indicative for immune exhaustion, the TLR7/8 agonist Resiquimod (R848) induced prominent type-1 interferon and interleukin 6 responses and robust CTL, B-cell, and NK-cell proliferation, which is particularly suited for antiviral immune responses. The recently licensed COVID-19 vaccines, BNT162b and mRNA-1273, are both based on single-stranded RNA. Indeed, we could confirm that the cytokine profile induced by lipid-complexed RNA was almost identical to the pattern induced by R848. Although this awaits further investigation, our results suggest that their efficacy involves the highly efficient antiviral response pattern stimulated by the RNAs’ TLR7/8 activation.
Leishmania is the causative agent of the tropical neglected disease leishmaniasis and infects macrophages as its definitive host cell . In order to sustain and propagate infections, Leishmania parasites have to complete cycles of exit and re-infection. Yet, the mechanism driving the parasite spread to other cells remains unclear. Recent studies reported pro-inflammatory monocytes as replicative niche of L. major and showed prolonged expression of IL-1β at the site of infection, indicating an activation of the NLRP3 inflammasome and pointing towards pyroptosis as a possible mechanism of parasite spread. To address the species-specific inflammasome activation of human cells we characterized the BLaER1 macrophages as a model for L. major infection. We found that Leishmania can infect, activate and develop in BLaER1 macrophages similar as they can do in primary human macrophages. Harnessing the possibilities of this infection model, we first showed that BLaER1 GSDMD cells, which carry a deletion of the pore-forming protein gasdermin D, are more resistant to pyroptotic cell death and, concomitantly, display a strongly delayed release of intracellular parasite. Using that knockout in a co-incubation assay in comparison with wild type BLaER1 cells, we demonstrate that impairment of the pyroptosis pathway leads to lower rates of parasite spread to new host cells, thus, implicating pyroptotic cell death as a possible exit mechanism of L. major in pro-inflammatory microenvironments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.