Building on the recent derivation of a bare factorization theorem for the b-quark induced contribution to the h → γγ decay amplitude based on soft-collinear effective theory, we derive the first renormalized factorization theorem for a process described at subleading power in scale ratios, where λ = mb/Mh « 1 in our case. We prove two refactorization conditions for a matching coefficient and an operator matrix element in the endpoint region, where they exhibit singularities giving rise to divergent convolution integrals. The refactorization conditions ensure that the dependence of the decay amplitude on the rapidity regulator, which regularizes the endpoint singularities, cancels out to all orders of perturbation theory. We establish the renormalized form of the factorization formula, proving that extra contributions arising from the fact that “endpoint regularization” does not commute with renormalization can be absorbed, to all orders, by a redefinition of one of the matching coefficients. We derive the renormalization-group evolution equation satisfied by all quantities in the factorization formula and use them to predict the large logarithms of order $$ {\alpha \alpha}_s^2{L}^k $$ αα s 2 L k in the three-loop decay amplitude, where $$ L=\ln \left(-{M}_h^2/{m}_b^2\right) $$ L = ln − M h 2 / m b 2 and k = 6, 5, 4, 3. We find perfect agreement with existing numerical results for the amplitude and analytical results for the three-loop contributions involving a massless quark loop. On the other hand, we disagree with the results of previous attempts to predict the series of subleading logarithms $$ \sim {\alpha \alpha}_s^n{L}^{2n+1} $$ ∼ αα s n L 2 n + 1 .
Soft functions defined in terms of matrix elements of soft fields dressed by Wilson lines are central components of factorization theorems for cross sections and decay rates in collider and heavy-quark physics. While in many cases the relevant soft functions are defined in terms of gluon operators, at subleading order in power counting soft functions containing quark fields appear. We present a detailed discussion of the properties of the soft-quark soft function consisting of a quark propagator dressed by two finite-length Wilson lines connecting at one point. This function enters in the factorization theorem for the Higgs-boson decay amplitude of the h → γγ process mediated by light-quark loops. We perform the renormalization of this soft function at one-loop order, present a conjecture for its two-loop anomalous dimension and discuss solutions to its renormalization-group evolution equation in momentum space, in Laplace space and in the "diagonal space", where the evolution is strictly local in the momentum variable.
Leptoquarks enter in several extensions of the Standard Model as possible solutions to a number of observed anomalies. We work within the soft collinear effective theory framework to present a detailed analysis of the decay rates of the three leptoquarks that appear the most in literature, the scalars S 1 and S 3 and the vector U µ 1 . Using renormalization group methods we resum the large logarithms arising from the evolution of the Wilson coefficients between the New Physics scale and the electroweak scale. We show the tree level matching Wilson coefficients for certain UV models.
Leptoquarks enter in several extensions of the Standard Model as possible solutions to a number of observed anomalies. We work within the soft-collinear effective theory framework to present a detailed analysis of the decay rates of the three leptoquarks that appear the most in literature, the scalars S1 and S3 and the vector $$ {U}_1^{\mu } $$ U 1 μ . Using renormalization-group methods we resum the large logarithms arising from the evolution of the Wilson coefficients between the New Physics scale and the electroweak scale. We also derive the tree-level matching relations for the Wilson coefficients in the effective theory for some specific leptoquark models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.