Although many polymers exhibit excellent dielectric performance including high energy density with high efficiency at room temperature, their electric and dielectric performance deteriorates at high temperatures (~150°C). Here, we show that nanofillers at very low volume content in a high-temperature (high–glass transition temperature) semicrystalline dipolar polymer, poly(arylene ether urea), can generate local structural changes, leading to a marked increase in both dielectric constant and breakdown field, and substantially reduce conduction losses at high electric fields and over a broad temperature range. Consequently, the polymer with a low nanofiller loading (0.2 volume %) generates a high discharged energy density of ca. 5 J/cm3 with high efficiency at 150°C. The experimental data reveal microstructure changes in the nanocomposites, which, at 0.2 volume % nanofiller loading, reduce constraints on dipole motions locally in the glassy state of the polymer, reduce the mean free path for the mobile charges, and enhance the deep trap level.
Both relaxor ferroelectric and antiferroelectric materials can individually demonstrate large electrocaloric effects (ECE). However, in order to further enhance the ECE it is crucial to find a material system, which can exhibit simultaneously both relaxor ferroelectric and antiferroelectric properties, or easily convert from one into another in terms of the compositional tailoring. Here we report on a system, in which the structure can readily change from antiferroelectric into relaxor ferroelectric and vice versa. To this end relaxor ferroelectric Pb0.89La0.11(Zr0.7Ti0.3)0.9725O3 and antiferroelectric Pb0.93La0.07(Zr0.82Ti0.18)0.9825O3 ceramics were designed near the antiferroelectric-ferroelectric phase boundary line in the La2O3-PbZrO3-PbTiO3 phase diagram. Conventional solid state reaction processing was used to prepare the two compositions. The ECE properties were deduced from Maxwell relations and Landau-Ginzburg-Devonshire (LGD) phenomenological theory, respectively, and also directly controlled by a computer and measured by thermometry. Large electrocaloric efficiencies were obtained and comparable with the results calculated via the phenomenological theory. Results show great potential in achieving large cooling power as refrigerants.
Barium zirconate titanate (BZT) (Ba(ZrTi)O) ceramics with Zr contents of x = 5, 10, 15, 20, 25, and 30 mol % were prepared using a solid-state reaction approach. The microstructures, morphologies, and electric properties were characterized using X-ray diffraction, scanning electron microscopy, and impedance analysis methods, respectively. The dielectric analyses indicate that the BZT bulk ceramics show characteristics of phase transition from a normal ferroelectric to a relaxor ferroelectric with the increasing Zr ionic content. The electrocaloric effect adiabatic temperature change decreases with the increasing Zr content. The highest adiabatic temperature change obtained is 2.4 K for BZT ceramics with a 5 mol % of Zr ionic content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.