High-entropy ceramics (HECs) are solid solutions of inorganic compounds with one or more Wyckoff sites shared by equal or near-equal atomic ratios of multi-principal elements. Although in the infant stage, the emerging of this new family of materials has brought new opportunities for material design and property tailoring. Distinct from metals, the diversity in crystal structure and electronic structure of ceramics provides huge space for properties tuning through band structure engineering and phonon engineering. Aside from strengthening, hardening, and low thermal conductivity that have already been found in high-entropy alloys, new properties like colossal dielectric constant, super ionic conductivity, severe anisotropic thermal expansion coefficient, strong electromagnetic wave absorption, etc., have been discovered in HECs. As a response to the rapid development in this nascent field, this article gives a comprehensive review on the structure features, theoretical methods for stability and property prediction, processing routes, novel properties, and prospective applications of HECs. The challenges on processing, characterization, and property predictions are also emphasized. Finally, future directions for new material exploration, novel processing, fundamental understanding, in-depth characterization, and database assessments are given.
In this study, yolk-shell Ni@SnO composites with a designable interspace were successfully prepared by the simple acid etching hydrothermal method. The Ni@void@SnO composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results indicate that interspaces exist between the Ni cores and SnO shells. Moreover, the void can be adjusted by controlling the hydrothermal reaction time. The unique yolk-shell Ni@void@SnO composites show outstanding electromagnetic wave absorption properties. A minimum reflection loss (RL) of -50.2 dB was obtained at 17.4 GHz with absorber thickness of 1.5 mm. In addition, considering the absorber thickness, minimal reflection loss, and effective bandwidth, a novel method to judge the effective microwave absorption properties is proposed. On the basis of this method, the best microwave absorption properties were obtained with a 1.7 mm thick absorber layer (RL= -29.7 dB, bandwidth of 4.8 GHz). The outstanding electromagnetic wave absorption properties stem from the unique yolk-shell structure. These yolk-shell structures can tune the dielectric properties of the Ni@air@SnO composite to achieve good impedance matching. Moreover, the designable interspace can induce interfacial polarization, multiple reflections, and microwave plasma.
In this work, amorphous TiO2 and SiO2-coated Ni composite microspheres were successfully prepared by a two-step method. The phase purity, morphology, and structure of composite microspheres are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). Due to the presence of the insulator SiO2 shell, the core-shell Ni-SiO2 composite microspheres exhibit better antioxidation capability than that of pure Ni microspheres. The core-shell Ni-SiO2 composite microspheres show the best microwave absorption properties than those of pure Ni microspheres and Ni-TiO2 composites. For Ni-SiO2 composite microspheres, an optimal reflection loss (RL) as low as -40.0 dB (99.99% absorption) was observed at 12.6 GHz with an absorber thickness of only 1.5 mm. The effective absorption (below -10 dB, 90% microwave absorption) bandwidth can be adjusted between 3.1 GHz and 14.4 GHz by tuning the absorber thickness in the range of 1.5-4.5 mm. The excellent microwave absorption abilities of Ni-SiO2 composite microspheres are attributed to a higher attenuation constant, Debye relaxation, interface polarization of the core-shell structure and synergistic effects between high dielectric loss and high magnetic loss.
In this work, dendritelike and rodlike NiCu alloys were prepared by a one-pot hydrothermal process at various reaction temperatures (120, 140, and 160 °C). The structure and morphology were analyzed by scanning electron microscopy, energy-dispersive spectrometry, X-ray diffraction, and transmission electron microscopy, which that demonstrate NiCu alloys have core-shell heterostructures with Ni as the shell and Cu as the core. The formation mechanism of the core-shell structures was also discussed. The uniform and perfect dendritelike NiCu alloy obtained at 140 °C shows outstanding electromagnetic-wave absorption properties. The lowest reflection loss (RL) of -31.13 dB was observed at 14.3 GHz, and the effective absorption (below -10 dB, 90% attenuation) bandwidth can be adjusted between 4.4 and 18 GHz with a thin absorber thickness in the range of 1.2-4.0 mm. The outstanding electromagnetic-wave-absorbing properties are ascribed to space-charge polarization arising from the heterogeneous structure of the NiCu alloy, interfacial polarization between the alloy and paraffin, and continuous micronetworks and vibrating microcurrent dissipation originating from the uniform and perfect dendritelike shape of NiCu prepared at 140 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.