In the present study, we report the systematic investigation of the effect of chemical oxidation on the structure of single-walled carbon nanotubes (SWNTs) by using different oxidants. The oxidation procedure was characterized by using infrared spectroscopy and transmission electron microscopy (TEM). The SWNTs were produced by chemical vapor deposition (CVD) and oxidized with three kinds of oxidants: (1) nitric acid (2.6 M), (2) a mixture of concentrated sulfuric acid (98 wt %) and concentrated nitric acid (16 M) (v/v ) 3/1) and (3) KMnO 4 . The results reveal that the different functional groups can be introduced when the SWNTs are treated with different oxidants. Refluxing in dilute nitric acid can be considered as a mild oxidation for SWNTs, introducing the carboxylic acid groups only at those initial defects that already exist. The abundance of the carboxylic acid groups generated with this oxidant remained constant along with the treating time. In contrast, sonication of SWNTs in H 2 SO 4 /HNO 3 increased the incidence of carboxylic acid groups not only at initial defect sites but also at newly created defect sites along the walls of SWNTs. Compared to the two oxidants above, when KMnO 4 in alkali was used as the oxidant, which is relatively mild, different amounts of -OH, -CdO, and -COOH groups were introduced. The oxidation processes begin mainly with the oxidation of the initial defects that arise during the CVD growth of the SWNTs and are accompanied by processes that can be roughly divided into two steps: (1) the defect-generating step and (2) the defect-consuming step. Specifically, during the defect-generating step, the oxidants attack the graphene structure by electrophilic reactions and generate active sites such as -OH and -CdO. This step depends on the oxidant's ability to generate -C-OH groups and to transform them into -CdO groups. During the defect-consuming step, the graphene structure of the tube was destroyed by the oxidation of the generated active sites in step 1. The defect-consuming step mostly counts on the ability of the oxidant to etch/destroy the graphite-like structure around the already generated -CdO and their neighborhood groups.
Transition metal carbide nanocrystalline M3C (M: Fe, Co, Ni) encapsulated in graphitic shells supported with vertically aligned graphene nanoribbons (VA-GNRs) are synthesized through a hot filament chemical vapor deposition (HF-CVD) method. The process is based on the direct reaction between iron group metals (Fe, Co, Ni) and carbon source, which are facilely get high purity carbide nanocrystals (NCs) and avoid any other impurity at relatively low temperature. The M3C-GNRs exhibit superior enhanced electrocatalystic activity for oxygen reduction reaction (ORR), including low Tafel slope (39, 41, and 45 mV dec(-1) for Fe3C-GNRs, Co3C-GNRs, and Ni3C-GNRs, respectively), positive onset potential (∼0.8 V), high electron transfer number (∼4), and long-term stability (no obvious drop after 20 000 s test). The M3C-GNRs catalyst also exhibits remarkable hydrogen evolution reaction (HER) activity with a large cathodic current density of 166.6, 79.6, and 116.4 mA cm(-2) at an overpotential of 200 mV, low onset overpotential of 32, 41, and 35 mV, small Tafel slope of 46, 57, and 54 mV dec(-1) for Fe3C-GNRs, Co3C-GNRs, and Ni3C-GNRs, respectively, as well as an excellent stability in acidic media.
In this study, yolk-shell Ni@SnO composites with a designable interspace were successfully prepared by the simple acid etching hydrothermal method. The Ni@void@SnO composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results indicate that interspaces exist between the Ni cores and SnO shells. Moreover, the void can be adjusted by controlling the hydrothermal reaction time. The unique yolk-shell Ni@void@SnO composites show outstanding electromagnetic wave absorption properties. A minimum reflection loss (RL) of -50.2 dB was obtained at 17.4 GHz with absorber thickness of 1.5 mm. In addition, considering the absorber thickness, minimal reflection loss, and effective bandwidth, a novel method to judge the effective microwave absorption properties is proposed. On the basis of this method, the best microwave absorption properties were obtained with a 1.7 mm thick absorber layer (RL= -29.7 dB, bandwidth of 4.8 GHz). The outstanding electromagnetic wave absorption properties stem from the unique yolk-shell structure. These yolk-shell structures can tune the dielectric properties of the Ni@air@SnO composite to achieve good impedance matching. Moreover, the designable interspace can induce interfacial polarization, multiple reflections, and microwave plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.