Abstract. A menthol-based solid dispersion was designed to improve the intrinsic solubility of the poorly soluble sulfamethoxazole-a class II drug molecule of Biopharmaceutics Classification System (BCS) displaying widespread antibacterial activity. Solid dispersions of menthol and sulfamethoxazole were compressed with hydroxypropyl methylcellulose (HPMC) into suitable sulfamethoxazole-loaded matrix tablets for oral drug delivery. The sulfamethoxazole-loaded solid dispersions and compressed tablets were characterized for their physicochemical and physicomechanical properties such as changes in crystallinity, melting point, molecular transitions, and textural analysis for critical analysis of their effects on the solubility and dissolution of sulfamethoxazole. The formulations were further evaluated for swelling, degradation, solubility, and in vitro drug release behavior. In vitro drug release from the sulfamethoxazole-loaded matrix tablets displayed a minimum and maximum fractional release of 0.714 and 0.970, respectively. The tablets further displayed different release rate profiles over the study periods of 12, 16, 48, and 56 h which were attributed to the varying concentrations of menthol within each formulation. Menthol was determined as a suitable hydrophilic carrier for sulfamethoxazole since it functioned as a solubilizing and release-retarding agent for improving the solubility and dissolution of sulfamethoxazole as well as controlling the rate at which it was released.
Abstract. The most successful treatment strategy for arthritis is intra-articular injections that are costly and have reduced patient compliance. The purpose of the current study was to develop an inflammationsensitive system for topical drug administration. Multi-macromolecular alginate-hyaluronic acid-chitosan (A-H-C) polyelectrolyte complex nanoparticles, loaded with indomethacin were developed employing pre-gel and post-gel techniques in the presence of dodecyl-L-pyroglutamate (DLP). In addition to in vitro studies, in silico simulations were performed to affirm and associate the molecular interactions inherent to the formulation of core all-natural multi-component biopolymeric architectures composed of an anionic (alginate), a cationic (chitosan), and an amphi-ionic polyelectrolytic (hyaluronic acid) macromolecule. The results demonstrated that DLP significantly influenced the size of the synthesized nanoparticles. Drug-content analysis revealed higher encapsulation efficiency (77.3%) in the presence of DLP, irrespective of the techniques used. Moreover, in vitro drug release studies showed that indomethacin release from the nanosystem was significantly improved (98%) in Fenton's reagent. Drug permeation across a cellulose membrane using a Franz diffusion cell system showed an initial surge flux (0.125 mg/cm −2 /h), followed by sustained release of indomethacin for the post-gel nanoparticles revealing its effective skin permeation efficiency. In conclusion, the study presents novel nanoparticles which could effectively encapsulate and deliver hydrophobic drugs to the target site, particularly for arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.