Since the plastic-based multilayer films applied to food packaging are not recyclable, it is necessary to develop easily recyclable single materials. Herein, polypropylene (PP)-based cellulose nanofiber (CNF)/nanoclay nanocomposites were prepared by melt-mixing using a fixed CNF content of 1 wt %, while the nanoclay content varied from 1 to 5 wt %. The optimum nanoclay content in the PP matrix was found to be 3 wt % (PCN3), while they exhibited synergistic effects as a nucleating agent. PCN3 exhibited the best mechanical properties, and the tensile and flexural moduli were improved by 51% and 26%, respectively, compared to PP. In addition, the oxygen permeability was reduced by 28%, while maintaining the excellent water vapor permeability of PP. The improvement in the mechanical and barrier properties of PP through the production of PP/CNF/nanoclay hybrid nanocomposites suggested their possible application in the field of food packaging.
Polypropylene (PP) nanocomposites have been widely researched for last decade due to its high mechanical property and multiple usages in various industrial fields from automobile to consumer packaging. Dispersion of nanoclay in polyethylene and PP is the key factor due to their hydrophobic property. Adding surfactant or introducing a polymer with a functional group, and modifying a natural clay with organic ions have been tried to achieve the better dispersion of clay in polymer matrix. In this study, the PP/clay nanocomposite with maleic anhydride grafted PP and hollow glass microspheres (HGMs) at various compositions were prepared and characterized. The addition of HGMs to PP/clay nanocomposites significantly improved the tensile stress at yield point except 7 wt % of HGMs. It is assumed that this could be due to not only the reinforcing effect of HGMs in PP, but the crushing effect of HGMs on the clay resulting in interlayer increase of clay as well. The barrier properties was also found to be improved about 32% max resulting from the better dispersion and presence of HGMs. It could be assumed that the HGMs could act as a ball creating a ball milling crush force to achieve the better dispersion of clay in the polymer and improve nanocomposite performance. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47476.
The poly(vinyl alcohol) (PVOH) is an eco‐friend polymer and has an excellent oxygen barrier property due to its strong intermolecular force, but difficulty in processing with conventional extrusion process gives it a limitation for various industrial applications, especially packaging industry. Many studies have attempted to plasticize PVOH to improve its processability, but high cost of PVOH is still drawback for a variety of industrial applications. Therefore, PVOH often blended with other biodegradable polymers such as starch to acquire the cost benefit. Nowadays, the butenediol vinyl alcohol copolymer (BVOH) is getting a great attention due to its melt processability and bio‐degradability, but its high cost is barrier to the industrial application as well. In this study, thermoplastic starch (TPS)/plasticized BVOH (P‐BVOH) were prepared by melt mixing technique, and the plasticization effect of glycerol on starch and BVOH with different composition was observed for optimized processing condition. Based on our preliminary study, TPS was blended with varying amount of P‐BVOH (100:0, 90:10, 80:20, 70:30, 60:40, and 50:50 weight ratio). Physical, oxygen barrier, and mechanical properties of the TPS/P‐BVOH blends were evaluated by various analytical instruments to achieve balanced property and performance. J. VINYL ADDIT. TECHNOL., 25:109–116, 2019. © 2018 Society of Plastics Engineers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.