Abstract. In this article we give a characterization of left (right) quasi-duo differential polynomial rings. In particular, we show that a differential polynomial ring is left quasiduo if and only if it is right quasi-duo. This yields a partial answer to a question posed by Lam and Dugas in 2005. We provide non-trivial examples of such rings and give a complete description of the maximal ideals of an arbitrary quasi-duo differential polynomial ring. Moreover, we show that there is no left (right) quasi-duo differential polynomial ring in several indeterminates.
Let D be a division ring with the center F and suppose that D* is the multiplicative group of D. D is called centrally finite if D is a finite dimensional vector space over F and D is locally centrally finite if every finite subset of D generates over F a division subring which is a finite dimensional vector space over F. We say that D is a linear division ring if every finite subset of D generates over Fa centrally finite division subring. It is obvious that every locally centrally finite division ring is linear. In this report we show that the inverse is not true by giving an example of a linear division ring which is not locally centrally finite. Further, we give some properties of subgroups in linear division rings. In particular, we show that every finitely generated subnormal subgroup in a linear ring is central. An interesting corollary is obtained as the following: If D is a linear division ring and D* is finitely generated, then D is a finite field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.