Let D be a division ring with the center F and suppose that D* is the multiplicative group of D. D is called centrally finite if D is a finite dimensional vector space over F and D is locally centrally finite if every finite subset of D generates over F a division subring which is a finite dimensional vector space over F. We say that D is a linear division ring if every finite subset of D generates over Fa centrally finite division subring. It is obvious that every locally centrally finite division ring is linear. In this report we show that the inverse is not true by giving an example of a linear division ring which is not locally centrally finite. Further, we give some properties of subgroups in linear division rings. In particular, we show that every finitely generated subnormal subgroup in a linear ring is central. An interesting corollary is obtained as the following: If D is a linear division ring and D* is finitely generated, then D is a finite field.
Let D be a division ring with the center F. We say that N is a subgroup of D with understanding that N is in fact a subgroup of the multiplicative group D* of D. In this note we disscus the conjecture which was posed by Herstein in 1978 [2, Conjecture 3]: If N is a subnormal subgroup of D which is radical over F, then N is contained in F. In his paper, Herstein himself showed that the conjecture is true if N is a finite subnormal subgroup of D. However, it is not proven for the general cases. In this note, we establish some properties of subnormal subgroups in division rings which could give some information in the direction of verifying this longstanding conjecture. In particular, it is shown that the conjecture is true for locally centrally finite division rings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.