A straightforward, economically viable, and green approach for the synthesis of well-stabilized Au/Ag bimetallic nanoparticles is described; this method uses nontoxic and renewable degraded pueraria starch (DPS) as a matrix and mild reaction conditions. The DPS acted as both a reducing agent and a capping agent for the bimetallic nanoparticles. Au/Ag bimetallic nanoparticles were successfully grown within the DPS matrixes, and the bimetallic structures were characterized using various methods, including high-resolution transmission electron microscopy, energy-dispersive X-ray, and X-ray diffraction. Moreover, it was shown that these DPS-capped Au/Ag bimetallic nanoparticles could function as catalysts for the reduction of 4-nitrophenol in the presence of NaBH4 and were more effective than Au or Ag monometallic nanoparticles.
In the present work, a facile one-pot method is designed to fabricate a core-shell fluorescent nanoparticle (NP) for cellular imaging based on a new cationic conjugated polymer, poly[9,9'-bis(6,6'-(N,N,N-trimethylaminium)fluorene-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene] (PFVCN). Gold nanoflowers (AuNFs) are prepared by a seedless method, in which a gelatin layer formed through a sol-gel phase transition is deposited on the surface of each AuNF. The cationic PFVCN self-assembles onto the negative surface of the resultant (AuNF@Gelatin NPs) driven by electrostatic attraction. An obvious enhancement of fluorescence intensity is observed. The AuNF@Gelatin/PFVCN NPs exhibit excellent cytocompatibility, and their cellular imaging ability is demonstrated when cocultured with HeLa cells. AuNF@Gelatin/PFVCN hybrid NPs are expected to be a desirable material in the field of cellular imaging and biosensing.
In this Article, large and uniform Ag nanoparticle-containing
hybrid
hydrogels were prepared by in situ reduction of Ag ions in cross-linked
tapioca dialdehyde starch (DAS)–chitosan hydrogels. In the
hybrid hydrogels, chitosan was chosen as a macromolecular cross-linker
because of its abundant source and good biocompatibility. The hybrid
hydrogel showed good water-swelling properties, which could be controlled
by varying the ratio of chitosan to tapioca DAS in the hydrogel. The
reductive aldehyde groups in the cross-linked hydrogels could be used
to reduce Ag ions to Ag nanoparticles without any additional chemical
reductants. Interestingly, by controlling the reduction conditions
such as the tapioca DAS concentration, aqueous AgNO3 concentration,
reaction time, and aqueous ammonium concentration, Ag nanoparticles
with different sizes and morphologies were obtained. Because of their
biocompatibility, degradable constituents, mild reaction conditions,
and controlled preparation of Ag nanoparticles, these tapioca DAS–chitosan/Ag
nanoparticle hybrid hydrogels show promise as functional hydrogels.
Owing to the development of microelectronics, demands for excellent thermal dissipation materials have substantially increased. Learning from natural nacre, thermally conductive epoxy nanocomposites were prepared based on asymmetrically polydopamine-functionalized Janus graphene oxide (JPGO) scaffolds. The required highly oriented JPGO scaffolds were prepared via the bidirectional freeze-casting method. With the addition of epoxy resin, the resulting nanocomposite reveals anisotropic thermal properties. With the total content of the JPGO scaffold being 0.93 wt %, almost 35 times enhancement of in-plane thermal conductivity (perpendicular to the lamellar structure) (∼5.6 W m −1 K −1 ) has been obtained. The single-side-functionalized JPGO scaffolds play an important role in forming thermal conductive networks for the epoxy nanocomposites. Importantly, the nanocomposites present electrically insulating properties (>10 14 Ω cm). Such high-performance nanocomposites have promising applications for thermal management in electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.