Antithrombin is a member of the serine proteinase inhibitor (serpin) family which contain a flexible reactive site loop that interacts with, and is cleaved by the target proteinase. In cleaved and latent serpins, the reactive site loop is inserted into a large central beta-sheet in the same molecule, whereas in ovalbumin, a nonfunctional serpin, the reactive site loop is completely exposed and in an alpha-helical conformation. However, in neither conformation can the reactive site loop bind to target proteinases. Here we report the structure of an intact and cleaved human antithrombin complex. The intact reactive site loop is in a novel conformation that seems well suited for interaction with proteinases such as thrombin and blood coagulation factor Xa.
The three-dimensional structure of antistasin, a potent inhibitor of blood coagulation factor Xa, from the Mexican leech Haementeria officinalis was determined at 1.9 A resolution by X-ray crystallography. The structure reveals a novel protein fold composed of two homologous domains, each resembling the structure of hirustasin, a related 55-residue protease inhibitor. However, hirustasin has a different overall shape than the individual antistasin domains, it contains four rather than two beta-strands, and does not inhibit factor Xa. The two antistasin domains can be subdivided into two similarly sized subdomains with different relative orientations. Consequently, the domain shapes are different, the N-terminal domain being wedge-shaped and the C-terminal domain flat. Docking studies suggest that differences in domain shape enable the N-terminal, but not C-terminal, domain of antistasin to bind and inhibit factor Xa, even though both have a very similar reactive site. Furthermore, a putative exosite binding region could be defined in the N-terminal domain of antistasin, comprising residues 15-17, which is likely to interact with a cluster of positively charged residues on the factor Xa surface (Arg222/Lys223/Lys224). This exosite binding region explains the specificity and inhibitory potency of antistasin towards factor Xa. In the C-terminal domain of antistasin, these exosite interactions are prevented due to the different overall shape of this domain.
Crystals of the penicillin binding protein 4 (PBP4) fromto six weeks. They belong to space group C222 with cell dimensions a = 68.5 Å, b = 100.5 Å and c = 137.0 Å, and diffract to at least 2.8 Å resolution. There 9747 AG Groningen is one molecule with a molecule mass of 49,568 Da in the asymmetric unit. The Netherlands
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.