Antithrombin is a member of the serine proteinase inhibitor (serpin) family which contain a flexible reactive site loop that interacts with, and is cleaved by the target proteinase. In cleaved and latent serpins, the reactive site loop is inserted into a large central beta-sheet in the same molecule, whereas in ovalbumin, a nonfunctional serpin, the reactive site loop is completely exposed and in an alpha-helical conformation. However, in neither conformation can the reactive site loop bind to target proteinases. Here we report the structure of an intact and cleaved human antithrombin complex. The intact reactive site loop is in a novel conformation that seems well suited for interaction with proteinases such as thrombin and blood coagulation factor Xa.
Inflammation, regardless of whether it is provoked by infection or by tissue damage, starts with the activation of macrophages which initiate a cascade of inflammatory responses by producing the cytokines interleukin-1 (IL-1) and tumour necrosis factor-alpha (ref. 1). Three naturally occurring ligands for the IL-1 receptor (IL1R) exist: the agonists IL-1alpha and IL-1beta and the IL-1-receptor antagonist IL1RA (ref. 2). IL-1 is the only cytokine for which a naturally occurring antagonist is known. Here we describe the crystal structure at 2.7 A resolution of the soluble extracellular part of type-I IL1R complexed with IL1RA. The receptor consists of three immunoglobulin-like domains. Domains 1 and 2 are tightly linked, but domain three is completely separate and connected by a flexible linker. Residues of all three domains contact the antagonist and include the five critical IL1RA residues which were identified by site-directed mutagenesis. A region that is important for biological function in IL-1beta, the 'receptor trigger site' is not in direct contact with the receptor in the IL1RA complex. Modelling studies suggest that this IL-1beta trigger site might induce a movement of domain 3.
Structure-activity relationships within a series of highly potent 2-carboxyindole-based factor Xa inhibitors incorporating a neutral P1 ligand are described with particular emphasis on the structural requirements for addressing subpockets of the factor Xa enzyme. Interactions with the subpockets were probed by systematic substitution of the 2-carboxyindole scaffold, in combination with privileged P1 and P4 substituents. Combining the most favorable substituents at the indole nucleus led to the discovery of a remarkably potent factor Xa inhibitor displaying a K(i) value of 0.07 nM. X-ray crystallography of inhibitors bound to factor Xa revealed substituent-dependent switching of the inhibitor binding mode and provided a rationale for the SAR obtained. These results underscore the key role played by the P1 ligand not only in determining the binding affinity of the inhibitor by direct interaction but also in modifying the binding mode of the whole scaffold, resulting in a nonlinear SAR.
Attraktives Chlor: Nichtkovalente Wechselwirkungen zwischen Chlor‐ oder Brom‐Atomen und aromatischen Ringen in Proteinen bieten einen neuen Ansatzpunkt für die Beeinflussung der molekularen Erkennung. Die Einführung dieser Substituenten an spezifischen Positionen zweier Faktor‐Xa‐Inhibitoren erhöht deren freie Bindungsenergie durch die Wechselwirkung mit einer Tyrosineinheit. Das allgemeine Vorkommen dieses Strukturmotivs wird anhand zahlreicher Kristallstukturen und quantenchemischer Rechnungen belegt (siehe Bild).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.