BackgroundThe plant-pathogenic fungus Fusarium oxysporum f.sp.lycopersici (Fol) has accessory, lineage-specific (LS) chromosomes that can be transferred horizontally between strains. A single LS chromosome in the Fol4287 reference strain harbors all known Fol effector genes. Transfer of this pathogenicity chromosome confers virulence to a previously non-pathogenic recipient strain. We hypothesize that expression and evolution of effector genes is influenced by their genomic context.ResultsTo gain a better understanding of the genomic context of the effector genes, we manually curated the annotated genes on the pathogenicity chromosome and identified and classified transposable elements. Both retro- and DNA transposons are present with no particular overrepresented class. Retrotransposons appear evenly distributed over the chromosome, while DNA transposons tend to concentrate in large chromosomal subregions. In general, genes on the pathogenicity chromosome are dispersed within the repeat landscape. Effector genes are present within subregions enriched for DNA transposons. A miniature Impala (mimp) is always present in their promoters. Although promoter deletion studies of two effector gene loci did not reveal a direct function of the mimp for gene expression, we were able to use proximity to a mimp as a criterion to identify new effector gene candidates. Through xylem sap proteomics we confirmed that several of these candidates encode proteins secreted during plant infection.ConclusionsEffector genes in Fol reside in characteristic subregions on a pathogenicity chromosome. Their genomic context allowed us to develop a method for the successful identification of novel effector genes. Since our approach is not based on effector gene similarity, but on unique genomic features, it can easily be extended to identify effector genes in Fo strains with different host specificities.
Arogyapacha, the local name of Trichopus zeylanicus , is a rare, indigenous medicinal plant of India. This plant is famous for its traditional use as an instant energy stimulant. So far, no genomic resource is available for this important plant and hence its metabolic pathways are poorly understood. Here, we report on a high-quality draft assembly of approximately 713.4 Mb genome of T. zeylanicus , first draft genome from the genus Trichopus . The assembly was generated in a hybrid approach using Illumina short-reads and Pacbio longer-reads. The total assembly comprised of 22601 scaffolds with an N50 value of 433.3 Kb. We predicted 34452 protein coding genes in T. zeylanicus genome and found that a significant portion of these predicted genes were associated with various secondary metabolite biosynthetic pathways. Comparative genome analysis revealed extensive gene collinearity between T. zeylanicus and its closely related plant species. The present genome and annotation data provide an essential resource to speed-up the research on secondary metabolism, breeding and molecular evolution of T. zeylanicus.
Globisporangium splendens (formerly Pythium splendens) is an oomycete pathogen of many economically important vegetable crops. Here, we present the first draft genome of P. splendens, which comprises 197 scaffolds with a total length of 53.3 Mb and 17,350 predicted protein-coding genes.
Potato (Solanum tuberosum L.) and tomato (S. lycopersicum L.) are the most economically important vegetable crops in Egypt and worldwide. The winter crop in Egypt is particularly prone to late blight caused by Phytophthora infestans. A total of 152 P. infestans isolates were isolated from the 2013, 2014, 2016 and 2018 winter crops with 82 isolates from potato, 69 from tomato and one isolate from eggplant (S. melongena L.). All isolates belonged to the A1 mating type with no evidence of A2 or self-fertile strains. The majority of isolates (53%) were sensitive to metalaxyl, 32% were intermediate and 15% were resistant. Variation in aggressiveness between three P. infestans isolates EG-005 (13_A2) and EG-276 (23_A1) from potato, and EG-237 (23_A1) from eggplant was determined on tuber slices and leaflets of 10 potato cultivars. The eggplant isolate EG-237 showed higher sporulation capacity compared with the other tested isolates and was able to infect potato (Lady Rosetta cv) and tomato (Super Strain B cv). The simple sequence repeat (SSR) genotyping data showed that in contrast to our previous work (3-year period 2010–12) in which the proportion of 13_A2 lineage was 35%, all isolates belonged to the 23_A1 lineage. There was no evidence for the existence of the A2 mating type or 13_A2 lineage even in the destroyed field crops of some cultivars (Cara, Bellini and Valor) that had been reported as resistant to 23_A1. The data have been submitted into the Euroblight database to allow temporal and spatial genetic diversity to be examined in comparison with other regional P. infestans populations. The AVR2 and AVR2-like RXLR effector genes were amplified and sequenced. In the avirulent AVR2 gene, only one heterozygous SNP was detected at position 31 in the N terminus in six isolates out of eleven, whereas two heterozygous SNPs were detected at position 29 in the N-terminus and ninety-two in the C- terminus of the AVR2-like gene. This suggests that changes in the previously reported virulence profile of 23_A1 are not related to commercial cultivars carrying the R2 gene. In addition, this is the first report of P. infestans on eggplant in Egypt.
The black scorch disease of date palm caused by Thielaviopsis punctulata is a serious threat to the cultivation and productivity of date palm in Arabian Peninsula. The virulence factors that contribute to pathogenicity of T. punctulata have not been identified yet. In the present study, using bioinformatics approach, secretory proteins of T. punctulata were identified and functionally characterized. A total of 197 putative secretory proteins were identified, of which 74 were identified as enzymes for carbohydrate degradation (CAZymes), 25 were proteases, and 47 were predicted as putative effectors. Within the CAZymes, 50 cell wall-degrading enzymes, potentially to degrade cell wall components such as cellulose, hemicellulose, lignin, and pectin, were identified. Of the 47 putative effectors, 34 possessed at least one functional domain. The secretome of T. punctulata was compared to the predicted secretome of five closely related species (T. musarum, T. ethacetica, T. euricoi, T. cerberus, and T. populi) and identified species specific CAZymes and putative effector genes in T. punctulata, providing a valuable resource for the research aimed at understanding the molecular mechanism underlying the pathogenicity of T. punctulata on Date palm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.