Deep eutectic solvents (DESs) comprise ChCl/urea, in combination with water, have been considered in removing acid gases (CO2 and H2S) from biogas. The evaluation of DES for biogas upgrading at relatively high pressure (i.e., >8.0 bar) has not been reported before. The aqueous DES performance has also not been analyzed compared to conventional amines-based solvent (MEA) and ionic liquid (IL). To the best of our knowledge, this is the first study that presents the integration of DES-based biogas upgrading with a mixed refrigerant liquefaction process to facilitate the safe and economical transportation of biomethane over long distances. The biogas considered in this study consisted of 60% CH4, 39% CO2, and 1% H2S. The aqueous ChCl/urea (70 wt%) results in biomethane with ≥99.0 wt% purity and ≥97.0 wt% recovery. Then, this biomethane was liquefied with ≥90% liquefaction rate. Based on the results obtained herein, overall capital, operating, and total annualized cost savings of 2.8%, 25.82%, and 14.26% were achieved using the 70% DES-based integrated process in comparison with the MEA-based integrated process. Whereas 1.41%, 16.85%, and 8.71% capital, operating, and total annualized costs could be saved in comparison with the IL (i.e., [Bmim][PF6])-based integrated process. It could be deduced that the overall cost of the biomethane value chain can be reduced using the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.