International audienceWe use correlations of the ambient seismic noise to study the crust in western Europe. Cross correlation of 1 year of noise recorded at 150 three components broadband stations yields more than 3 000 Rayleigh wave group velocity measurements. These measurements are used to construct Rayleigh group velocity maps of the Alpine region and surrounding area in the 5–80 s period band. In the 5–10 s period band, the seismic noise recorded in Europe is dominated by surface waves originating from the Northern Atlantic ocean. This anisotropy of the noise and the uneven station distribution affect the azimuthal distribution of the paths where we obtain reliable group velocity measurements. As a consequence our group velocity models have better resolution in the northeast direction than in the southwest direction. Finally we invert the resulting Rayleigh wave group velocity maps to determine the Moho depth. Our results are in good agreement with the result of the numerous active experiments in the Alps and provide a continuous image of the Alpine structure
Shallow slow slip events have been well documented offshore Gisborne at the northern Hikurangi subduction margin, New Zealand, and are associated with tectonic tremor downdip of the slow slip patch and increases in local microseismicity. Tremor and seismicity on the shallow subduction interface are often poorly resolved due to their distance from land‐based seismic and geodetic networks. To address this shortcoming, the Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip experiment deployed 24 absolute pressure gauges and 15 ocean bottom seismometers on the seafloor above the Gisborne slow slip patch to investigate the spatial and temporal extent of slow slip and associated tremor and earthquake activity. We present a detailed spatiotemporal analysis of the seismic signatures of various interplate slip processes associated with the September/October 2014 Gisborne slow slip event. Tectonic tremor begins toward the end and continues after the geodetically constrained slow slip event and is localized in the vicinity of two subducted seamounts within and updip of the slow slip patch. The subsequent, rather than synchronous occurrence of tremor suggests that tremor may be triggered by stress changes induced by slow slip. However, Coulomb failure stress change models based on the slow slip distribution fail to predict the location of tremor, suggesting that seamount subduction plays a dominant role in the stress state of the shallow megathrust. This and the observed interplay of seismic and aseismic interplate slip processes imply that stress changes from slow slip play a secondary role in the distribution of associated microseismicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.