<p>Recent studies have shown that upper atmospheric observations can be used to examine the properties of acoustic and gravity waves (AGWs) induced by natural hazards (NHs), including earthquakes and tsunamis (e.g., Komjathy et al., Radio Sci., 51, 2016). In addition to rapid processing, analysis, and retrieval of the AGW signals in data, the need remains to investigate a broad parameter space of atmospheric and ionospheric state observables for the robust constraint of coupled and nonlinear processes. Here, we present several earthquake/tsunami-atmosphere-ionosphere case studies that demonstrate the possibility to detect AGWs and constrain the characteristics of their sources. Direct numerical simulations of the triggering and wave dynamical processes, from Earth's interior to the exobase, are carried out based on coupled forward seismic wave and tsunami propagation models and our state-of-the-art nonlinear neutral atmosphere and ionosphere models MAGIC and GEMINI (Zettergren and Snively, JGR, 120, 2015).</p><p>We first demonstrate that ionospheric plasma responses to AGWs from large earthquakes include information about rupture evolutions, providing another independent dataset for the investigation of faulting processes (Inchin et al., JGR, 125, 4, 2020). At the same time, we highlight that remote sensing observables, such as total electron content (TEC), can be insensitive to some specifics of the rupturing process (and thus characteristics of induced AGWs) due to their integrated nature or inefficient geometry of observations to uncover those specifics, and should be used accordingly and with consideration of their geometry. Likewise, we demonstrate that ground-level magnetometer observations are readily sensitive to magnetic field disturbances from ionospheric dynamo effects, induced by coseismic AGWs generated over epicentral areas. These are readily measured at low cost, may also be incorporated to complement the analysis of earthquake-atmosphere-ionosphere coupled processes. Next, we show that in addition to ionospheric plasma responses, mesopause airglow (MA) transient imprints of coseismic and tsunamigenic AGWs are readily detectable with modern ground- and space-based imagers. We demonstrate that AGW-driven fluctuations in the MA, generated over near-epicentral areas, may be readily detectable 6 minutes after the earthquake, providing an important and independent data source to supplement early-warning systems, additionally uncovering specifics of rupturing processes (Inchin et al., JGR, 125, 6, 2020). The amplitudes of tsunamigenic AGWs and related fluctuations in MA closely follow the dynamics of the tsunamis, uncovering their spatial and temporal evolutions (Inchin et al., JGR, 125, 12, 2020). In summary, comprehensive dynamical simulations reveal subsequent observable features of surface to atmosphere-ionosphere coupling, and new opportunities to diagnose hazard processes.</p><p><img src="
We propose a novel self‐assembly process to fabricate periodic arrays of β‐FeSi2 nanopillars for photonic applications. Self‐assembled monolayers of polystyrene nanospheres (PSNSs) are coated with SiO2 by oblique evaporation at a deposition angle of 70°. After the PSNSs are removed by annealing in air at 650 °C, periodic arrays of SiO2 nanospherical crowns (NSCs) remain. On the NSC template, Si and Fe are deposited alternatively at a deposition angle of 80° and a substrate temperature of 470 °C. Due to the strong shadowing effect, non‐close‐packed nanopillar arrays of β‐FeSi2 are successfully fabricated. Periodic arrays of β‐FeSi2 are useful to manipulate thermal and/or solar radiation. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Mg is diffused into Al x Ga1-x As layers at 785°C from a Ga solution containing 0.1 wt% Mg and saturated with As. Secondary ion mass spectroscopy and differential Hall measurement reveal that the depth profile consists of a high-Mg-concentration region near the surface and a lower-concentration plateau inside. Diffusion into GaAs, Al0.5Ga0.5As, and Al0.7Ga0.3As for 20 min results in diffusion fronts at about 2, 4, and 6 µm from the surface. The depth with a fixed hole concentration varies in proportion to the square root of the diffusion time both in GaAs and Al0.35Ga0.65As.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.