High-throughput screening (HTS) plays a central role in modern drug discovery, allowing the rapid screening of large compound collections against a variety of putative drug targets. HTS is an industrial-scale process, relying on sophisticated automation, control, and state-of-the art detection technologies to organize, test, and measure hundreds of thousands to millions of compounds in nano- to microliter volumes. Despite this high technology, hit selection for HTS is still typically done using simple data analysis and basic statistical methods. The authors discuss in this article some shortcomings of these methods and present alternatives based on modern methods of statistical data analysis. Most important, they describe and show numerous real examples from the biologist-friendly Stat Server HTS application (SHS), a custom-developed software tool built on the commercially available S-PLUS and StatServer statistical analysis and server software. This system remotely processes HTS data using powerful and sophisticated statistical methodology but insulates users from the technical details by outputting results in a variety of readily interpretable graphs and tables.
The enzyme 11β–hydroxysteroid dehydrogenase (HSD) type 1 converts inactive cortisone into active cortisol in cells, thereby raising the effective glucocorticoid (GC) tone above serum levels. We report that pharmacologic inhibition of 11β-HSD1 has a therapeutic effect in mouse models of metabolic syndrome. Administration of a selective, potent 11β-HSD1 inhibitor lowered body weight, insulin, fasting glucose, triglycerides, and cholesterol in diet-induced obese mice and lowered fasting glucose, insulin, glucagon, triglycerides, and free fatty acids, as well as improved glucose tolerance, in a mouse model of type 2 diabetes. Most importantly, inhibition of 11β-HSD1 slowed plaque progression in a murine model of atherosclerosis, the key clinical sequela of metabolic syndrome. Mice with a targeted deletion of apolipoprotein E exhibited 84% less accumulation of aortic total cholesterol, as well as lower serum cholesterol and triglycerides, when treated with an 11β-HSD1 inhibitor. These data provide the first evidence that pharmacologic inhibition of intracellular GC activation can effectively treat atherosclerosis, the key clinical consequence of metabolic syndrome, in addition to its salutary effect on multiple aspects of the metabolic syndrome itself.
We prepared and characterized golimumab (CNTO148), a human IgG1 tumor necrosis factor alpha (TNFα) antagonist monoclonal antibody chosen for clinical development based on its molecular properties. Golimumab was compared with infliximab, adalimumab and etanercept for affinity and in vitro TNFα neutralization. The affinity of golimumab for soluble human TNFα, as determined by surface plasmon resonance, was similar to that of etanercept (18 pM versus 11 pM), greater than that of infliximab (44 pM) and significantly greater than that of adalimumab (127 pM, p=0.018). The concentration of golimumab necessary to neutralize TNFα-induced E-selectin expression on human endothelial cells by 50% was significantly less than those for infliximab (3.2 fold; p=0.017) and adalimumab (3.3-fold; p=0.008) and comparable to that for etanercept. The conformational stability of golimumab was greater than that of infliximab (primary melting temperature [Tm] 74.8 °C vs. 69.5 °C) as assessed by differential scanning calorimetry. In addition, golimumab showed minimal aggregation over the intended shelf life when formulated as a high concentration liquid product (100 mg/mL) for subcutaneous administration. In vivo, golimumab at doses of 1 and 10 mg/kg significantly delayed disease progression in a mouse model of human TNFα-induced arthritis when compared with untreated mice, while infliximab was effective only at 10 mg/kg. Golimumab also significantly reduced histological scores for arthritis severity and cartilage damage, as well as serum levels of pro-inflammatory cytokines and chemokines associated with arthritis. Thus, we have demonstrated that golimumab is a highly stable human monoclonal antibody with high affinity and capacity to neutralize human TNFα in vitro and in vivo.
For defining the mechanism of control of sex skin colour in male rhesus macaques (Macaca mulatta) by hormones, a spectrocolorimeter was used to monitor skin redness after administration of testosterone, dihydrotestosterone (a non-aromatizable androgen), oestradiol or fadrozole (an aromatase inhibitor that blocks the conversion of testosterone to oestrogen). Skin blood flow was measured by laser doppler. Eight 9-14 kg, 5-9 year old intact male rhesus macaques were given hormone, fadrozole or vehicle treatments in a cross-over experimental design. Baseline blood flow and colour measurements were taken in four paired tattoo defined areas on the back and legs of each animal (one pair in non-sex skin, three pairs in sex skin). Colour and blood flow measurements were taken 3-4 days after the first dose and, thereafter, once a week for 3-6 weeks. Measurements taken after treatments were compared with baseline and intra-animal comparisons were made between treatment and vehicle for each animal. In all animals after administration of 4 mg testosterone kg-1 (long-acting), redness in the sex skin areas increased (P = 0.032) by day 3 and returned to baseline values by day 7. Administration of 1 mg oestradiol kg-1 day-1 for 4 days caused increased redness in all animals (P = 0.007) similar in magnitude to that caused by testosterone. Administration of 0.1 mg dihydrotestosterone kg-1 day-1 for 4 days resulted in a nonsignificant decrease in redness (P = 0.09) on days 3-7. Treatment with fadrozole (0.25-0.5 mg kg-1 day-1) for 3 weeks caused sex skin to become significantly less red during treatment (P = 0.014). There was no significant change in redness in non-sex skin areas during any treatment. Sex skin blood flow increased in animals treated with testosterone, correlating with increased redness (R = 0.906), while blood flow in non-sex skin was unchanged. Increased redness after treatment with testosterone and oestrogen, no change in redness with treatment with dihydrotestosterone and a decrease in redness after treatment with fadrozole support the conclusion that oestrogen controls sex skin redness, and testosterone acts indirectly through conversion to oestrogen to cause increased sex skin redness in male rhesus macaques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.